Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
fairscale
Commits
d99c445a
Unverified
Commit
d99c445a
authored
Oct 16, 2020
by
msbaines
Committed by
GitHub
Oct 16, 2020
Browse files
[feat] moe: add all_to_all backward support (#137)
parent
1e6c547a
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
43 additions
and
13 deletions
+43
-13
.circleci/config.yml
.circleci/config.yml
+2
-2
fairscale/nn/moe/moelayer.py
fairscale/nn/moe/moelayer.py
+22
-11
tests/nn/moe/test_moelayer.py
tests/nn/moe/test_moelayer.py
+19
-0
No files found.
.circleci/config.yml
View file @
d99c445a
...
...
@@ -42,7 +42,7 @@ install_dep_15: &install_dep_15
-
run
:
name
:
Install Dependencies
command
:
|
sudo apt-get install -y
mpi-default
-dev
sudo apt-get install -y
libopenmpi
-dev
pip install --progress-bar off torch==1.5.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install --progress-bar off -r requirements-test.txt
python -c 'import torch; print("Torch version:", torch.__version__)'
...
...
@@ -52,7 +52,7 @@ install_dep_16: &install_dep_16
-
run
:
name
:
Install Dependencies
command
:
|
sudo apt-get install -y
mpi-default
-dev
sudo apt-get install -y
libopenmpi
-dev
pip install --progress-bar off torch==1.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
pip install --progress-bar off -r requirements-test.txt
python -c 'import torch; print("Torch version:", torch.__version__)'
...
...
fairscale/nn/moe/moelayer.py
View file @
d99c445a
...
...
@@ -3,7 +3,7 @@
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
from
typing
import
TYPE_CHECKING
,
Any
,
Optional
from
typing
import
TYPE_CHECKING
,
Any
,
Optional
,
Tuple
import
torch
from
torch
import
Tensor
...
...
@@ -19,6 +19,24 @@ else:
# See https://arxiv.org/pdf/2006.16668.pdf for details.
# Based on https://github.com/pytorch/pytorch/pull/40762
class
_AllToAll
(
torch
.
autograd
.
Function
):
@
staticmethod
def
forward
(
ctx
:
Any
,
group
:
dist
.
ProcessGroup
,
input
:
Tensor
)
->
Tensor
:
# type: ignore
ctx
.
group
=
group
world_size
=
dist
.
get_world_size
(
group
)
input
=
input
.
contiguous
()
output
=
torch
.
empty_like
(
input
)
input_chunks
=
list
(
input
.
chunk
(
world_size
))
output_chunks
=
list
(
output
.
chunk
(
world_size
))
dist
.
all_to_all
(
output_chunks
,
input_chunks
,
group
=
group
)
return
output
@
staticmethod
def
backward
(
ctx
:
Any
,
*
grad_output
:
Tensor
)
->
Tuple
[
None
,
Tensor
]:
return
(
None
,
_AllToAll
.
apply
(
ctx
.
group
,
*
grad_output
))
class
MOELayer
(
Base
):
"""MOELayer module which implements MixtureOfExperts as described in Gshard_.
::
...
...
@@ -42,21 +60,14 @@ class MOELayer(Base):
self
.
gate
=
gate
self
.
expert
=
expert
self
.
group
=
group
if
group
is
not
None
else
dist
.
group
.
WORLD
self
.
world_size
=
dist
.
get_world_size
(
self
.
group
)
def
all_to_all_dispatch
(
self
,
dispatch_mask
:
Tensor
,
input
:
Tensor
)
->
Tensor
:
dispatched_input
=
torch
.
einsum
(
"gsec,gsm->egcm"
,
dispatch_mask
.
float
(),
input
)
dispatched_input
=
dispatched_input
.
contiguous
()
chunks
=
list
(
dispatched_input
.
chunk
(
self
.
world_size
))
dist
.
all_to_all
(
chunks
,
chunks
,
self
.
group
)
return
dispatched_input
return
_AllToAll
.
apply
(
self
.
group
,
dispatched_input
)
def
all_to_all_combine
(
self
,
combine_weights
:
Tensor
,
input
:
Tensor
)
->
Tensor
:
expert_output
=
input
.
contiguous
()
chunks
=
list
(
expert_output
.
chunk
(
self
.
world_size
))
dist
.
all_to_all
(
chunks
,
chunks
,
self
.
group
)
output
=
torch
.
einsum
(
"gsec,egcm->gsm"
,
combine_weights
,
expert_output
)
return
output
expert_output
=
_AllToAll
.
apply
(
self
.
group
,
input
)
return
torch
.
einsum
(
"gsec,egcm->gsm"
,
combine_weights
,
expert_output
)
def
forward
(
self
,
*
input
:
Tensor
,
**
kwargs
:
Any
)
->
Tensor
:
assert
len
(
input
)
==
1
,
"only single input Tensor supported"
...
...
tests/nn/moe/test_moelayer.py
View file @
d99c445a
...
...
@@ -60,3 +60,22 @@ def test_forward(device):
assert
output
.
shape
==
input
.
shape
# Re-assembled output should match input due to identity expert.
assert
torch
.
allclose
(
input
,
output
)
@
pytest
.
mark
.
mpi
@
pytest
.
mark
.
parametrize
(
"device"
,
[
"cpu"
])
def
test_backward
(
device
):
loss
=
torch
.
nn
.
MSELoss
()
model_dim
=
8
num_experts
=
dist
.
get_world_size
(
dist
.
group
.
WORLD
)
input
=
torch
.
randn
(
3
,
4
,
16
,
model_dim
).
to
(
device
)
gate
=
Top2Gate
(
model_dim
,
num_experts
)
expert
=
torch
.
nn
.
Linear
(
model_dim
,
model_dim
,
bias
=
False
)
# Use identity matrix
expert
.
weight
=
torch
.
nn
.
Parameter
(
torch
.
eye
(
model_dim
))
moe
=
MOELayer
(
gate
,
expert
).
to
(
device
)
output
=
moe
(
input
)
assert
output
.
shape
==
input
.
shape
output
=
loss
(
output
,
input
)
output
.
backward
()
assert
torch
.
allclose
(
expert
.
weight
.
grad
,
torch
.
zeros_like
(
expert
.
weight
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment