Unverified Commit b35a3d3f authored by msbaines's avatar msbaines Committed by GitHub
Browse files

[test] using PyTorch v1.6 for Lint checks (#36)

parent 2f638e5a
......@@ -115,7 +115,7 @@ jobs:
keys:
- cache-key-cpu-{{ checksum "setup.py"}}-{{ checksum "requirements-test.txt"}}
- <<: *install_dep_15
- <<: *install_dep_16
- save_cache:
paths:
......
......@@ -24,7 +24,6 @@
from typing import List
import numpy as np # type: ignore
import torch
from .utils import ensure_divisibility
......@@ -68,11 +67,9 @@ def initialize_model_parallel(model_parallel_size_: int, pipeline_length: int =
data_parallel_size = int(world_size / (model_parallel_size * pipeline_length))
groups = (
torch.LongTensor(range(world_size)).reshape(data_parallel_size, pipeline_length, model_parallel_size).numpy()
)
groups = torch.LongTensor(range(world_size)).reshape(data_parallel_size, pipeline_length, model_parallel_size)
found = np.where(groups == rank)
found = torch.where(groups == rank)
assert all(len(x) == 1 for x in found)
found = [x[0] for x in found]
......
......@@ -47,7 +47,7 @@ def _initialize_affine_weight(
in_features: int,
per_partition_size: int,
partition_dim: int,
init_method: Callable[[torch.Tensor], None],
init_method: Callable[[torch.Tensor], torch.Tensor],
stride: int = 1,
return_master_weight: bool = False,
) -> Optional[torch.Tensor]:
......@@ -101,7 +101,7 @@ class VocabParallelEmbedding(torch.nn.Module):
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
init_method: Callable[[torch.Tensor], None] = init.xavier_normal_,
init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_,
) -> None:
super(VocabParallelEmbedding, self).__init__()
# Keep the input dimensions.
......@@ -169,7 +169,7 @@ class ParallelEmbedding(torch.nn.Module):
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
init_method: Callable[[torch.Tensor], None] = init.xavier_normal_,
init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_,
keep_master_weight_for_test: bool = False,
) -> None:
super(ParallelEmbedding, self).__init__()
......@@ -242,7 +242,7 @@ class ColumnParallelLinear(torch.nn.Module):
out_features: int,
bias: bool = True,
gather_output: bool = True,
init_method: Callable[[torch.Tensor], None] = init.xavier_normal_,
init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_,
stride: int = 1,
keep_master_weight_for_test: bool = False,
) -> None:
......@@ -326,7 +326,7 @@ class RowParallelLinear(torch.nn.Module):
out_features: int,
bias: bool = True,
input_is_parallel: bool = False,
init_method: Callable[[torch.Tensor], None] = init.xavier_normal_,
init_method: Callable[[torch.Tensor], torch.Tensor] = init.xavier_normal_,
stride: int = 1,
keep_master_weight_for_test: bool = False,
):
......
......@@ -30,6 +30,7 @@ from . import nn as nn
#MODIFIED BY TORCHGPIPE
from . import backends
from . import distributed
from . import version
#END
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment