Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
fairscale
Commits
2108f20e
Unverified
Commit
2108f20e
authored
Oct 27, 2020
by
msbaines
Committed by
GitHub
Oct 27, 2020
Browse files
[refactor] moe: use all_to_all_single (#168)
parent
c5e5ff78
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3 additions
and
4 deletions
+3
-4
fairscale/nn/moe/moe_layer.py
fairscale/nn/moe/moe_layer.py
+1
-3
stubs/torch/distributed/__init__.pyi
stubs/torch/distributed/__init__.pyi
+2
-1
No files found.
fairscale/nn/moe/moe_layer.py
View file @
2108f20e
...
@@ -27,9 +27,7 @@ class _AllToAll(torch.autograd.Function):
...
@@ -27,9 +27,7 @@ class _AllToAll(torch.autograd.Function):
world_size
=
dist
.
get_world_size
(
group
)
world_size
=
dist
.
get_world_size
(
group
)
input
=
input
.
contiguous
()
input
=
input
.
contiguous
()
output
=
torch
.
empty_like
(
input
)
output
=
torch
.
empty_like
(
input
)
input_chunks
=
list
(
input
.
chunk
(
world_size
))
dist
.
all_to_all_single
(
output
,
input
,
group
=
group
)
output_chunks
=
list
(
output
.
chunk
(
world_size
))
dist
.
all_to_all
(
output_chunks
,
input_chunks
,
group
=
group
)
return
output
return
output
@
staticmethod
@
staticmethod
...
...
stubs/torch/distributed/__init__.pyi
View file @
2108f20e
...
@@ -35,7 +35,8 @@ def is_initialized() -> bool: ...
...
@@ -35,7 +35,8 @@ def is_initialized() -> bool: ...
def init_process_group(backend: Union[str, Backend], timeout: datetime.timedelta = datetime.timedelta(0, 1800), rank: Optional[int] = None, world_size: Optional[int] = None): ...
def init_process_group(backend: Union[str, Backend], timeout: datetime.timedelta = datetime.timedelta(0, 1800), rank: Optional[int] = None, world_size: Optional[int] = None): ...
def new_group(ranks: List[int], timeout: datetime.timedelta = datetime.timedelta(0, 1800), backend: Union[None, str, Backend] = None): ...
def new_group(ranks: List[int], timeout: datetime.timedelta = datetime.timedelta(0, 1800), backend: Union[None, str, Backend] = None): ...
def all_to_all(output: List[Tensor], intput: List[Tensor], group:Optional[ProcessGroup] = None, async_op: bool = False): ...
def all_to_all(output: List[Tensor], input: List[Tensor], group:Optional[ProcessGroup] = None, async_op: bool = False): ...
def all_to_all_single(output: Tensor, input: Tensor, output_split_size: Optional[List[int]] = None, input_split_size: Optional[List[int]] = None, group:Optional[ProcessGroup] = None, async_op: bool = False): ...
def all_reduce(tensor: Tensor, op: ReduceOp = ReduceOp.SUM, group:Optional[ProcessGroup] = None, async_op: bool = False): ...
def all_reduce(tensor: Tensor, op: ReduceOp = ReduceOp.SUM, group:Optional[ProcessGroup] = None, async_op: bool = False): ...
def all_gather(tensor_list: List[Tensor], tensor: Tensor, group:Optional[ProcessGroup] = None, async_op: bool = False): ...
def all_gather(tensor_list: List[Tensor], tensor: Tensor, group:Optional[ProcessGroup] = None, async_op: bool = False): ...
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment