Commit 0cd65242 authored by Mandeep Singh Baines's avatar Mandeep Singh Baines
Browse files

Initial commit

parents
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# Copyright 2019 Kakao Brain
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Multithreading in pipeline parallelism."""
from contextlib import contextmanager
from queue import Queue
import sys
from threading import Thread
from types import TracebackType
from typing import TYPE_CHECKING, Callable, Dict, Generator, List, Optional, Tuple, Type, Union, cast
import torch
from .microbatch import Batch
from .stream import AbstractStream, use_device, use_stream
__all__: List[str] = []
ExcInfo = Tuple[Type[BaseException], BaseException, TracebackType]
# Queue is generic only in stubs.
# https://mypy.readthedocs.io/en/latest/common_issues.html#using-classes-that-are-generic-in-stubs-but-not-at-runtime
if TYPE_CHECKING:
InQueue = Queue[Optional["Task"]]
OutQueue = Queue[Tuple[bool, Union[Tuple["Task", Batch], ExcInfo, None]]]
else:
InQueue = Queue
OutQueue = Queue
class Task:
"""A task represents how to compute a micro-batch on a partition.
It consists of two parts: :meth:`compute` and :meth:`finalize`.
:meth:`compute` should be executed in worker threads concurrently.
:meth:`finalize` should be executed after when worker threads complete to
execute :meth:`compute`.
:meth:`compute` might be boosted by worker threads. Because it produces
several CUDA API calls by user code. In PyTorch, parallel CUDA API calls
are not serialized through GIL. So more than one CUDA API call can be
produced at the same time.
"""
def __init__(
self, stream: AbstractStream, *, compute: Callable[[], Batch], finalize: Optional[Callable[[Batch], None]],
) -> None:
self.stream = stream
self._compute = compute
self._finalize = finalize
self._grad_enabled = torch.is_grad_enabled()
def compute(self) -> Batch:
with use_stream(self.stream), torch.set_grad_enabled(self._grad_enabled):
return self._compute()
def finalize(self, batch: Batch) -> None:
if self._finalize is None:
return
with use_stream(self.stream), torch.set_grad_enabled(self._grad_enabled):
self._finalize(batch)
def worker(in_queue: InQueue, out_queue: OutQueue, device: torch.device) -> None:
"""The main loop of a worker thread."""
with use_device(device):
while True:
task = in_queue.get()
if task is None:
break
try:
batch = task.compute()
except Exception:
exc_info = cast(ExcInfo, sys.exc_info())
out_queue.put((False, exc_info))
continue
out_queue.put((True, (task, batch)))
done = (False, None)
out_queue.put(done)
def create_workers(devices: List[torch.device],) -> Tuple[List[InQueue], List[OutQueue]]:
"""Spawns worker threads. A worker thread is bound to a device."""
in_queues: List[InQueue] = []
out_queues: List[OutQueue] = []
# Spawn workers.
workers: Dict[torch.device, Tuple[InQueue, OutQueue]] = {}
def normalize_device(device: torch.device) -> torch.device:
if device.type == "cuda" and device.index is None:
return torch.device("cuda", index=torch.cuda.current_device())
if device.type == "cpu" and device.index is not None:
return torch.device("cpu")
return device
for device in devices:
device = normalize_device(device)
try:
in_queue, out_queue = workers[device]
except KeyError:
in_queue = Queue()
out_queue = Queue()
workers[device] = (in_queue, out_queue)
t = Thread(target=worker, args=(in_queue, out_queue, device), daemon=True,)
t.start()
in_queues.append(in_queue)
out_queues.append(out_queue)
return (in_queues, out_queues)
def join_workers(in_queues: List[InQueue], out_queues: List[OutQueue]) -> None:
# Close workers.
for in_queue in set(in_queues):
in_queue.put(None)
# Join running workers.
running = set(out_queues)
while running:
out_queue = running.pop()
ok, payload = out_queue.get()
done = (False, None)
if (ok, payload) == done:
continue
running.add(out_queue)
@contextmanager
def spawn_workers(devices: List[torch.device],) -> Generator[Tuple[List[InQueue], List[OutQueue]], None, None]:
try:
(in_queues, out_queues) = create_workers(devices)
yield (in_queues, out_queues)
finally:
join_workers(in_queues, out_queues)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
"""
:mod:`fairgc.optim` is a package implementing various torch optimization algorithms.
"""
from .oss import OSS
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import copy
from typing import TYPE_CHECKING, Any, Callable, List, Optional, Type
import torch.distributed as dist
from torch.optim import SGD, Optimizer
if TYPE_CHECKING:
from torch.optim.optimizer import _params_t
else:
_params_t = Any
class OSS(Optimizer):
"""Wraps an arbitrary :class:`optim.Optimizer <torch.optim.Optimizer>`
optimizer and shards its state as describe by ZeRO_.
::
opt = OSS(params, optim=torch.optim.Adam, lr=0.01)
.. _ZeRO: https://arxiv.org/abs/1910.02054
Pipe combines pipeline parallelism with checkpointing to reduce peak
memory required to train while minimizing device under-utilization.
You should determine the balance when defining a :class:`Pipe` module, as
balancing will not be done automatically. The module will be partitioned
into multiple devices according to the given balance. You may rely on
heuristics to find your own optimal configuration.
Args:
params (list of tensors):
parameters to be optimized
Keyword Args:
optim (torch.nn.Optimizer):
optimizer to shard (default: SGD)
group (group):
torch.distributed group (default: group.WORLD)
"""
optim: Optimizer
in_super_constructor: bool
def __init__(self, params: _params_t, optim: Type[Optimizer] = SGD, group: Any = dist.group.WORLD, **defaults: Any):
self.in_super_constructor = True
super().__init__(params, defaults)
self.in_super_constructor = False
self.group = group
self.rank = dist.get_rank(group)
param_groups = self.partition_parameters()
self.optim = optim(param_groups[self.rank], **defaults)
def partition_parameters(self) -> List[List[dict]]:
"""Partitions parameters across distributed ranks.
Returns a list of param_groups (which is a list of dict) where each
element of the list contains the param_groups for a rank. Element 0
corresponds to rank 0, etc. We need all the ranks for the broadcast
inside step().
"""
world_size = dist.get_world_size(self.group)
param_groups: List[List] = [list() for _ in range(world_size)]
sizes = [0] * world_size
for param_group in self.param_groups:
param_lists: List[List] = [list() for _ in range(world_size)]
for param in param_group["params"]:
# Add this param to rank with smallest size.
rank = sizes.index(min(sizes))
param_lists[rank].append(param)
sizes[rank] += param.numel()
for rank, params in enumerate(param_lists):
if len(params):
pg = copy.copy(param_group)
pg["params"] = params
param_groups[rank].append(pg)
return param_groups
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
loss = self.optim.step(closure=closure)
for rank, param_groups in enumerate(self.partition_parameters()):
for param_group in param_groups:
for param in param_group["params"]:
dist.broadcast(param, rank, group=self.group)
return loss
def state_dict(self) -> dict:
""" Gets this rank's state_dict. """
return self.optim.state_dict()
def load_state_dict(self, state_dict: dict) -> None:
""" Loads this rank's state_dict. """
self.optim.load_state_dict(state_dict)
def add_param_group(self, param_group: dict) -> None:
super().add_param_group(param_group)
if not self.in_super_constructor:
param_groups = self.partition_parameters()[self.rank]
if len(param_groups) == len(self.optim.param_groups) + 1:
self.optim.add_param_group(param_groups[-1])
[build-system]
requires = [
"setuptools >= 40.6.2",
"wheel >= 0.30.0"
]
build-backend = "setuptools.build_meta"
[tool.black]
line-length = 120
exclude = '''
/(
\.git
| \.mypy_cache
| \.pytest_cache
| build
| stubs
)/
'''
-r requirements.txt
pre-commit
black == 19.10b0
flake8 == 3.7.9
isort == 4.3.21
mypy == 0.770
pytest == 5.4.1
torchtext == 0.6.0
torch == 1.4.0
# NOTE(msb) not a dependency but needed by torch == 1.4.0
numpy == 1.17.4
# -----------------------------------------------------------------------------
# pytest
# -----------------------------------------------------------------------------
[tool:pytest]
testpaths = tests
addopts = --verbose
junit_family = xunit2
[aliases]
test = pytest
# -----------------------------------------------------------------------------
# coverage
# -----------------------------------------------------------------------------
[coverage:report]
# Coverage couldn't detect backward functions because they are called by C++.
# Append "# pragma: no cover" to the definition lines to ignore them.
# https://www.janfreyberg.com/blog/2019-04-01-testing-pytorch-functions/
exclude_lines = pragma: no cover
# -----------------------------------------------------------------------------
# flake8
# -----------------------------------------------------------------------------
[flake8]
select = B,C,E,F,P,T4,W,B9
max-line-length = 120
# C408 ignored because we like the dict keyword argument syntax
# E501 is not flexible enough, we're using B950 instead
ignore =
E203,E305,E402,E501,E721,E741,F403,F405,F821,F841,F999,W503,W504,C408,E302,W291,E303,
per-file-ignores = __init__.py: F401
exclude = build,*.pyi,.git
# -----------------------------------------------------------------------------
# isort
# -----------------------------------------------------------------------------
[isort]
line_length = 120
multi_line_output=3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
skip_glob = build/*,stubs/*
# Don't split "import" and "from".
force_sort_within_sections = true
known_third_party = models,pytest,setuptools,torch,torchtext
# -----------------------------------------------------------------------------
# mypy
# -----------------------------------------------------------------------------
# Docs for mypy config: https://mypy.readthedocs.io/en/latest/config_file.html
[mypy]
mypy_path = ./stubs/
follow_imports = normal
# This project must be strictly typed.
[mypy-fairscale.*]
check_untyped_defs = true
disallow_untyped_defs = true
disallow_untyped_calls = true
disallow_untyped_decorators = true
disallow_incomplete_defs = true
warn_unused_ignores = true
# Ignore missing imports from untyped third-party libraries.
[mypy-torch.*,torchvision.*,setuptools.*,pytest.*]
ignore_missing_imports = true
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import setuptools
def fetch_requirements():
with open("requirements.txt") as f:
reqs = f.read().strip().split("\n")
return reqs
if __name__ == "__main__":
setuptools.setup(
name="fairscale",
description="fairscale: Utility library for large-scale and high-performance training.",
install_requires=fetch_requirements(),
include_package_data=True,
packages=setuptools.find_packages(exclude=("tests", "tests.*")),
python_requires=">=3.6",
author="Facebook AI Research",
author_email="todo@fb.com",
classifiers=[
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"License :: OSI Approved :: BSD License",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Operating System :: OS Independent",
],
)
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
# @generated from torch/__init__.pyi.in
from typing import List, Tuple, Optional, Union, Any, ContextManager, Callable, overload, Iterator
from torch._six import inf
import builtins
# These identifiers are reexported from other modules. These modules
# are not mypy-clean yet, so in order to use this stub file usefully
# from mypy you will need to specify --follow-imports=silent.
# Not all is lost: these imports still enable IDEs like PyCharm to offer
# autocomplete.
#
# Note: Why does the syntax here look so strange? Import visibility
# rules in stubs are different from normal Python files! You must use
# 'from ... import ... as ...' syntax to cause an identifier to be
# exposed (or use a wildcard); regular syntax is not exposed.
from .random import set_rng_state as set_rng_state, get_rng_state as get_rng_state, \
manual_seed as manual_seed, initial_seed as initial_seed, seed as seed
from ._tensor_str import set_printoptions as set_printoptions
from .functional import *
from .serialization import save as save, load as load
from .autograd import no_grad as no_grad, enable_grad as enable_grad, \
set_grad_enabled as set_grad_enabled
from . import cuda as cuda
from . import optim as optim
from . import nn as nn
#MODIFIED BY TORCHGPIPE
from . import backends
from . import version
#END
class dtype: ...
class layout: ...
strided : layout = ...
class memory_format: ...
contiguous_format: memory_format = ...
class qscheme: ...
per_tensor_affine: qscheme = ...
# See https://github.com/python/mypy/issues/4146 for why these workarounds
# is necessary
_int = builtins.int
_float = builtins.float
_bool = builtins.bool
class device:
type: str
index: _int
#MODIFIED BY TORCHGPIPE
@overload
def __init__(self, device: device) -> None: ...
#END
@overload
def __init__(self, device: Union[_int, str]) -> None: ...
@overload
def __init__(self, type: str, index: _int) -> None: ...
#MODIFIED BY TORCHGPIPE
class Size(tuple):
def numel(self) -> _int: ...
#END
#MODIFIED BY TORCHGPIPE
class Storage:
def size(self) -> _int: ...
def element_size(self) -> _int: ...
#END
# See https://github.com/python/mypy/issues/4146 for why these workarounds
# is necessary
_dtype = dtype
_device = device
_qscheme = qscheme
_size = Union[Size, List[_int], Tuple[_int, ...]]
_layout = layout
# Meta-type for "numeric" things; matches our docs
Number = Union[builtins.int, builtins.float, builtins.bool]
class Generator:
device: _device = ...
@overload
def __init__(self, device: Optional[_device]=None) -> None: ...
@overload
def __init__(self, device: Union[_int, str]) -> None: ...
# TODO: One downside of doing it this way, is direct use of
# torch.tensor.Tensor doesn't get type annotations. Nobody
# should really do that, so maybe this is not so bad.
class Tensor:
requires_grad: _bool = ...
grad: Optional[Tensor] = ...
data: Tensor = ...
names: List[str] = ...
@property
def dtype(self) -> _dtype: ...
@property
def shape(self) -> Size: ...
@property
def device(self) -> _device: ...
@property
def T(self) -> Tensor: ...
@property
def grad_fn(self) -> Optional[Any]: ...
@property
def ndim(self) -> _int: ...
@property
def layout(self) -> _layout: ...
def __abs__(self) -> Tensor: ...
def __add__(self, other: Any) -> Tensor: ...
@overload
def __and__(self, other: Number) -> Tensor: ...
@overload
def __and__(self, other: Tensor) -> Tensor: ...
@overload
def __and__(self, other: Any) -> Tensor: ...
def __bool__(self) -> builtins.bool: ...
def __div__(self, other: Any) -> Tensor: ...
def __eq__(self, other: Any) -> Tensor: ... # type: ignore
def __float__(self) -> builtins.float: ...
def __floordiv__(self, other: Any) -> Tensor: ...
def __ge__(self, other: Any) -> Tensor: ... # type: ignore
def __getitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor: ...
def __gt__(self, other: Any) -> Tensor: ... # type: ignore
def __iadd__(self, other: Any) -> Tensor: ...
@overload
def __iand__(self, other: Number) -> Tensor: ...
@overload
def __iand__(self, other: Tensor) -> Tensor: ...
@overload
def __iand__(self, other: Any) -> Tensor: ...
def __idiv__(self, other: Any) -> Tensor: ...
@overload
def __ilshift__(self, other: Number) -> Tensor: ...
@overload
def __ilshift__(self, other: Tensor) -> Tensor: ...
@overload
def __ilshift__(self, other: Any) -> Tensor: ...
def __imul__(self, other: Any) -> Tensor: ...
def __index__(self) -> builtins.int: ...
def __int__(self) -> builtins.int: ...
def __invert__(self) -> Tensor: ...
@overload
def __ior__(self, other: Number) -> Tensor: ...
@overload
def __ior__(self, other: Tensor) -> Tensor: ...
@overload
def __ior__(self, other: Any) -> Tensor: ...
@overload
def __irshift__(self, other: Number) -> Tensor: ...
@overload
def __irshift__(self, other: Tensor) -> Tensor: ...
@overload
def __irshift__(self, other: Any) -> Tensor: ...
def __isub__(self, other: Any) -> Tensor: ...
def __itruediv__(self, other: Any) -> Tensor: ...
@overload
def __ixor__(self, other: Number) -> Tensor: ...
@overload
def __ixor__(self, other: Tensor) -> Tensor: ...
@overload
def __ixor__(self, other: Any) -> Tensor: ...
def __le__(self, other: Any) -> Tensor: ... # type: ignore
def __long__(self) -> builtins.int: ...
@overload
def __lshift__(self, other: Number) -> Tensor: ...
@overload
def __lshift__(self, other: Tensor) -> Tensor: ...
@overload
def __lshift__(self, other: Any) -> Tensor: ...
def __lt__(self, other: Any) -> Tensor: ... # type: ignore
def __matmul__(self, other: Any) -> Tensor: ...
def __mod__(self, other: Any) -> Tensor: ...
def __mul__(self, other: Any) -> Tensor: ...
def __ne__(self, other: Any) -> Tensor: ... # type: ignore
def __neg__(self) -> Tensor: ...
def __nonzero__(self) -> builtins.bool: ...
@overload
def __or__(self, other: Number) -> Tensor: ...
@overload
def __or__(self, other: Tensor) -> Tensor: ...
@overload
def __or__(self, other: Any) -> Tensor: ...
def __pow__(self, other: Any) -> Tensor: ...
def __radd__(self, other: Any) -> Tensor: ...
def __rfloordiv__(self, other: Any) -> Tensor: ...
def __rmul__(self, other: Any) -> Tensor: ...
@overload
def __rshift__(self, other: Number) -> Tensor: ...
@overload
def __rshift__(self, other: Tensor) -> Tensor: ...
@overload
def __rshift__(self, other: Any) -> Tensor: ...
def __setitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple], val: Union[Tensor, Number]) -> None: ...
def __sub__(self, other: Any) -> Tensor: ...
def __truediv__(self, other: Any) -> Tensor: ...
@overload
def __xor__(self, other: Number) -> Tensor: ...
@overload
def __xor__(self, other: Tensor) -> Tensor: ...
@overload
def __xor__(self, other: Any) -> Tensor: ...
def _coalesced_(self, coalesced: _bool) -> Tensor: ...
def _dimI(self) -> _int: ...
def _dimV(self) -> _int: ...
def _indices(self) -> Tensor: ...
def _nnz(self) -> _int: ...
def _values(self) -> Tensor: ...
def abs(self) -> Tensor: ...
def abs_(self) -> Tensor: ...
def acos(self) -> Tensor: ...
def acos_(self) -> Tensor: ...
def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmv(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def align_as(self, other: Tensor) -> Tensor: ...
@overload
def align_to(self, names: List[Union[str, None]]) -> Tensor: ...
@overload
def align_to(self, order: List[Union[str, None]], ellipsis_idx: _int) -> Tensor: ...
@overload
def all(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
@overload
def all(self, dim: Union[str, None], keepdim: _bool=False) -> Tensor: ...
@overload
def all(self) -> Tensor: ...
def allclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
def angle(self) -> Tensor: ...
@overload
def any(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
@overload
def any(self, dim: Union[str, None], keepdim: _bool=False) -> Tensor: ...
@overload
def any(self) -> Tensor: ...
def apply_(self, callable: Callable) -> Tensor: ...
def argmax(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
def argmin(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
@overload
def argsort(self, dim: _int=-1, descending: _bool=False) -> Tensor: ...
@overload
def argsort(self, dim: Union[str, None], descending: _bool=False) -> Tensor: ...
def as_strided(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_strided_(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def asin(self) -> Tensor: ...
def asin_(self) -> Tensor: ...
def atan(self) -> Tensor: ...
def atan2(self, other: Tensor) -> Tensor: ...
def atan2_(self, other: Tensor) -> Tensor: ...
def atan_(self) -> Tensor: ...
def backward(self, gradient: Optional[Tensor]=None, keep_graph: _bool=False, create_graph: _bool=False) -> None: ...
def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def bernoulli(self, *, generator: Generator=None) -> Tensor: ...
@overload
def bernoulli(self, p: _float, *, generator: Generator=None) -> Tensor: ...
@overload
def bernoulli_(self, p: Tensor, *, generator: Generator=None) -> Tensor: ...
@overload
def bernoulli_(self, p: _float=0.5, *, generator: Generator=None) -> Tensor: ...
def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
def bitwise_not(self) -> Tensor: ...
def bitwise_not_(self) -> Tensor: ...
@overload
def bitwise_xor(self, other: Number) -> Tensor: ...
@overload
def bitwise_xor(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_xor_(self, other: Number) -> Tensor: ...
@overload
def bitwise_xor_(self, other: Tensor) -> Tensor: ...
def bmm(self, mat2: Tensor) -> Tensor: ...
def bool(self) -> Tensor: ...
def byte(self) -> Tensor: ...
def cauchy_(self, median: _float=0, sigma: _float=1, *, generator: Generator=None) -> Tensor: ...
def ceil(self) -> Tensor: ...
def ceil_(self) -> Tensor: ...
def char(self) -> Tensor: ...
def cholesky(self, upper: _bool=False) -> Tensor: ...
def cholesky_inverse(self, upper: _bool=False) -> Tensor: ...
def cholesky_solve(self, input2: Tensor, upper: _bool=False) -> Tensor: ...
def chunk(self, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_(self, min: _float=-inf, max: _float=inf) -> Tensor: ...
def clamp_max(self, max: Number) -> Tensor: ...
def clamp_max_(self, max: Number) -> Tensor: ...
def clamp_min(self, min: Number) -> Tensor: ...
def clamp_min_(self, min: Number) -> Tensor: ...
def clone(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
def coalesce(self) -> Tensor: ...
def conj(self) -> Tensor: ...
def contiguous(self) -> Tensor: ...
def cos(self) -> Tensor: ...
def cos_(self) -> Tensor: ...
def cosh(self) -> Tensor: ...
def cosh_(self) -> Tensor: ...
def cpu(self) -> Tensor: ...
def cross(self, other: Tensor, dim: Optional[_int]=None) -> Tensor: ...
def cuda(self, device: Optional[_device]=None, non_blocking: _bool=False) -> Tensor: ...
@overload
def cumprod(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumprod(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumsum(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumsum(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def dense_dim(self) -> _int: ...
def dequantize(self) -> Tensor: ...
def det(self) -> Tensor: ...
def detach(self) -> Tensor: ...
def detach_(self) -> Tensor: ...
def diag(self, diagonal: _int=0) -> Tensor: ...
def diag_embed(self, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
def diagflat(self, offset: _int=0) -> Tensor: ...
def diagonal(self, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
def digamma(self) -> Tensor: ...
def digamma_(self) -> Tensor: ...
def dim(self) -> _int: ...
def dist(self, other: Tensor, p: Number=2) -> Tensor: ...
def dot(self, tensor: Tensor) -> Tensor: ...
def double(self) -> Tensor: ...
def eig(self, eigenvectors: _bool=False) -> Tuple[Tensor, Tensor]: ...
def element_size(self) -> _int: ...
@overload
def eq(self, other: Number) -> Tensor: ...
@overload
def eq(self, other: Tensor) -> Tensor: ...
@overload
def eq_(self, other: Number) -> Tensor: ...
@overload
def eq_(self, other: Tensor) -> Tensor: ...
def equal(self, other: Tensor) -> _bool: ...
def erf(self) -> Tensor: ...
def erf_(self) -> Tensor: ...
def erfc(self) -> Tensor: ...
def erfc_(self) -> Tensor: ...
def erfinv(self) -> Tensor: ...
def erfinv_(self) -> Tensor: ...
def exp(self) -> Tensor: ...
def exp_(self) -> Tensor: ...
@overload
def expand(self, size: _size, *, implicit: _bool=False) -> Tensor: ...
@overload
def expand(self, *size: _int, implicit: _bool=False) -> Tensor: ...
def expand_as(self, other: Tensor) -> Tensor: ...
def expm1(self) -> Tensor: ...
def expm1_(self) -> Tensor: ...
def exponential_(self, lambd: _float=1, *, generator: Generator=None) -> Tensor: ...
def fft(self, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
@overload
def fill_(self, value: Number) -> Tensor: ...
@overload
def fill_(self, value: Tensor) -> Tensor: ...
def fill_diagonal_(self, fill_value: Number, wrap: _bool=False) -> Tensor: ...
@overload
def flatten(self, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
@overload
def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, None]) -> Tensor: ...
@overload
def flatten(self, start_dim: Union[str, None], end_dim: Union[str, None], out_dim: Union[str, None]) -> Tensor: ...
@overload
def flatten(self, dims: List[Union[str, None]], out_dim: Union[str, None]) -> Tensor: ...
@overload
def flip(self, dims: _size) -> Tensor: ...
@overload
def flip(self, *dims: _int) -> Tensor: ...
def float(self) -> Tensor: ...
def floor(self) -> Tensor: ...
def floor_(self) -> Tensor: ...
@overload
def fmod(self, other: Number) -> Tensor: ...
@overload
def fmod(self, other: Tensor) -> Tensor: ...
@overload
def fmod_(self, other: Number) -> Tensor: ...
@overload
def fmod_(self, other: Tensor) -> Tensor: ...
def frac(self) -> Tensor: ...
def frac_(self) -> Tensor: ...
@overload
def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
@overload
def gather(self, dim: Union[str, None], index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
@overload
def ge(self, other: Number) -> Tensor: ...
@overload
def ge(self, other: Tensor) -> Tensor: ...
@overload
def ge_(self, other: Number) -> Tensor: ...
@overload
def ge_(self, other: Tensor) -> Tensor: ...
def geometric_(self, p: _float, *, generator: Generator=None) -> Tensor: ...
def geqrf(self) -> Tuple[Tensor, Tensor]: ...
def ger(self, vec2: Tensor) -> Tensor: ...
def get_device(self) -> _int: ...
@overload
def gt(self, other: Number) -> Tensor: ...
@overload
def gt(self, other: Tensor) -> Tensor: ...
@overload
def gt_(self, other: Number) -> Tensor: ...
@overload
def gt_(self, other: Tensor) -> Tensor: ...
def half(self) -> Tensor: ...
def hardshrink(self, lambd: Number=0.5) -> Tensor: ...
def histc(self, bins: _int=100, min: Number=0, max: Number=0) -> Tensor: ...
def ifft(self, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
def imag(self) -> Tensor: ...
@overload
def index_add(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_add(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
def index_add_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy_(self, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_fill(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill(self, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill_(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill_(self, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
@overload
def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
@overload
def index_select(self, dim: Union[str, None], index: Tensor) -> Tensor: ...
def indices(self) -> Tensor: ...
def int(self) -> Tensor: ...
def int_repr(self) -> Tensor: ...
def inverse(self) -> Tensor: ...
def irfft(self, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True, signal_sizes: _size=()) -> Tensor: ...
def is_coalesced(self) -> _bool: ...
def is_complex(self) -> _bool: ...
def is_contiguous(self) -> _bool: ...
is_cuda: _bool
def is_distributed(self) -> _bool: ...
def is_floating_point(self) -> _bool: ...
is_leaf: _bool
def is_nonzero(self) -> _bool: ...
def is_pinned(self) -> _bool: ...
def is_same_size(self, other: Tensor) -> _bool: ...
def is_set_to(self, tensor: Tensor) -> _bool: ...
def is_signed(self) -> _bool: ...
def isclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
def item(self) -> Number: ...
@overload
def kthvalue(self, k: _int, dim: _int=-1, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def kthvalue(self, k: _int, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def le(self, other: Number) -> Tensor: ...
@overload
def le(self, other: Tensor) -> Tensor: ...
@overload
def le_(self, other: Number) -> Tensor: ...
@overload
def le_(self, other: Tensor) -> Tensor: ...
@overload
def lerp(self, end: Tensor, weight: Number) -> Tensor: ...
@overload
def lerp(self, end: Tensor, weight: Tensor) -> Tensor: ...
@overload
def lerp_(self, end: Tensor, weight: Number) -> Tensor: ...
@overload
def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: ...
def lgamma(self) -> Tensor: ...
def lgamma_(self) -> Tensor: ...
def log(self) -> Tensor: ...
def log10(self) -> Tensor: ...
def log10_(self) -> Tensor: ...
def log1p(self) -> Tensor: ...
def log1p_(self) -> Tensor: ...
def log2(self) -> Tensor: ...
def log2_(self) -> Tensor: ...
def log_(self) -> Tensor: ...
def log_normal_(self, mean: _float=1, std: _float=2, *, generator: Generator=None) -> Tensor: ...
@overload
def log_softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def log_softmax(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def logdet(self) -> Tensor: ...
def logical_not(self) -> Tensor: ...
def logical_not_(self) -> Tensor: ...
def logical_xor(self, other: Tensor) -> Tensor: ...
def logical_xor_(self, other: Tensor) -> Tensor: ...
@overload
def logsumexp(self, dim: Union[_int, _size], keepdim: _bool=False) -> Tensor: ...
@overload
def logsumexp(self, dim: List[Union[str, None]], keepdim: _bool=False) -> Tensor: ...
def long(self) -> Tensor: ...
def lstsq(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
@overload
def lt(self, other: Number) -> Tensor: ...
@overload
def lt(self, other: Tensor) -> Tensor: ...
@overload
def lt_(self, other: Number) -> Tensor: ...
@overload
def lt_(self, other: Tensor) -> Tensor: ...
def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
def map_(tensor: Tensor, callable: Callable) -> Tensor: ...
@overload
def masked_fill(self, mask: Tensor, value: Number) -> Tensor: ...
@overload
def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: ...
@overload
def masked_fill_(self, mask: Tensor, value: Number) -> Tensor: ...
@overload
def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: ...
def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
def masked_select(self, mask: Tensor) -> Tensor: ...
def matmul(self, other: Tensor) -> Tensor: ...
def matrix_power(self, n: _int) -> Tensor: ...
@overload
def max(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self, other: Tensor) -> Tensor: ...
@overload
def max(self) -> Tensor: ...
@overload
def mean(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def mean(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def mean(self, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def median(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self) -> Tensor: ...
@overload
def min(self, dim: _int, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self, other: Tensor) -> Tensor: ...
@overload
def min(self) -> Tensor: ...
def mm(self, mat2: Tensor) -> Tensor: ...
@overload
def mode(self, dim: _int=-1, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def mode(self, dim: Union[str, None], keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
def multinomial(self, num_samples: _int, replacement: _bool=False, *, generator: Generator=None) -> Tensor: ...
def mv(self, vec: Tensor) -> Tensor: ...
def mvlgamma(self, p: _int) -> Tensor: ...
def mvlgamma_(self, p: _int) -> Tensor: ...
def narrow(self, dim: _int, start: _int, length: _int) -> Tensor: ...
def narrow_copy(self, dim: _int, start: _int, length: _int) -> Tensor: ...
def ndimension(self) -> _int: ...
@overload
def ne(self, other: Number) -> Tensor: ...
@overload
def ne(self, other: Tensor) -> Tensor: ...
@overload
def ne_(self, other: Number) -> Tensor: ...
@overload
def ne_(self, other: Tensor) -> Tensor: ...
def neg(self) -> Tensor: ...
def neg_(self) -> Tensor: ...
def nelement(self) -> _int: ...
@overload
def new_empty(self, size: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def new_empty(self, *size: _int, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def new_full(self, size: _size, fill_value: Number, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def new_ones(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
@overload
def new_zeros(self, size: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def new_zeros(self, *size: _int, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def normal_(self, mean: _float=0, std: _float=1, *, generator: Generator=None) -> Tensor: ...
def numel(self) -> _int: ...
def numpy(self) -> Any: ...
def orgqr(self, input2: Tensor) -> Tensor: ...
def ormqr(self, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False) -> Tensor: ...
@overload
def permute(self, dims: _size) -> Tensor: ...
@overload
def permute(self, *dims: _int) -> Tensor: ...
def pin_memory(self) -> Tensor: ...
def pinverse(self, rcond: _float=1e-15) -> Tensor: ...
def polygamma(self, n: _int) -> Tensor: ...
def polygamma_(self, n: _int) -> Tensor: ...
@overload
def pow(self, exponent: Number) -> Tensor: ...
@overload
def pow(self, exponent: Tensor) -> Tensor: ...
@overload
def pow_(self, exponent: Number) -> Tensor: ...
@overload
def pow_(self, exponent: Tensor) -> Tensor: ...
def prelu(self, weight: Tensor) -> Tensor: ...
@overload
def prod(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def prod(self, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def prod(self, dim: Union[str, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
def put_(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
def q_per_channel_axis(self) -> _int: ...
def q_per_channel_scales(self) -> Tensor: ...
def q_per_channel_zero_points(self) -> Tensor: ...
def q_scale(self) -> _float: ...
def q_zero_point(self) -> _int: ...
def qr(self, some: _bool=True) -> Tuple[Tensor, Tensor]: ...
def qscheme(self) -> _qscheme: ...
@overload
def random_(self, from_: _int, to: _int, *, generator: Generator=None) -> Tensor: ...
@overload
def random_(self, to: _int, *, generator: Generator=None) -> Tensor: ...
@overload
def random_(self, *, generator: Generator=None) -> Tensor: ...
def real(self) -> Tensor: ...
def reciprocal(self) -> Tensor: ...
def reciprocal_(self) -> Tensor: ...
def refine_names(self, names: List[Union[str, None]]) -> Tensor: ...
def relu(self) -> Tensor: ...
def relu_(self) -> Tensor: ...
@overload
def remainder(self, other: Number) -> Tensor: ...
@overload
def remainder(self, other: Tensor) -> Tensor: ...
@overload
def remainder_(self, other: Number) -> Tensor: ...
@overload
def remainder_(self, other: Tensor) -> Tensor: ...
def rename(self, names: Optional[List[Union[str, None]]]) -> Tensor: ...
def rename_(self, names: Optional[List[Union[str, None]]]) -> Tensor: ...
def renorm(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
def renorm_(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
@overload
def repeat(self, repeats: _size) -> Tensor: ...
@overload
def repeat(self, *repeats: _int) -> Tensor: ...
@overload
def repeat_interleave(self, repeats: Tensor, dim: Optional[_int]=None) -> Tensor: ...
@overload
def repeat_interleave(self, repeats: _int, dim: Optional[_int]=None) -> Tensor: ...
def requires_grad_(self, mode: _bool=True) -> Tensor: ...
@overload
def reshape(self, shape: _size) -> Tensor: ...
@overload
def reshape(self, *shape: _int) -> Tensor: ...
def reshape_as(self, other: Tensor) -> Tensor: ...
@overload
def resize_(self, size: _size, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def resize_(self, *size: _int, memory_format: Optional[memory_format]=None) -> Tensor: ...
def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
def rfft(self, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True) -> Tensor: ...
def roll(self, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
def rot90(self, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
def round(self) -> Tensor: ...
def round_(self) -> Tensor: ...
def rsqrt(self) -> Tensor: ...
def rsqrt_(self) -> Tensor: ...
@overload
def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter(self, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter_add(self, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def select(self, dim: Union[str, None], index: _int) -> Tensor: ...
@overload
def select(self, dim: _int, index: _int) -> Tensor: ...
@overload
def set_(self, source: Storage) -> Tensor: ...
@overload
def set_(self, source: Storage, storage_offset: _int, size: _size, stride: _size=()) -> Tensor: ...
@overload
def set_(self, source: Tensor) -> Tensor: ...
@overload
def set_(self) -> Tensor: ...
def short(self) -> Tensor: ...
def sigmoid(self) -> Tensor: ...
def sigmoid_(self) -> Tensor: ...
def sign(self) -> Tensor: ...
def sign_(self) -> Tensor: ...
def sin(self) -> Tensor: ...
def sin_(self) -> Tensor: ...
def sinh(self) -> Tensor: ...
def sinh_(self) -> Tensor: ...
@overload
def size(self) -> Size: ...
@overload
def size(self, _int) -> _int: ...
def slogdet(self) -> Tuple[Tensor, Tensor]: ...
def smm(self, mat2: Tensor) -> Tensor: ...
@overload
def softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def softmax(self, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def solve(self, A: Tensor) -> Tuple[Tensor, Tensor]: ...
@overload
def sort(self, dim: _int=-1, descending: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def sort(self, dim: Union[str, None], descending: _bool=False) -> Tuple[Tensor, Tensor]: ...
def sparse_dim(self) -> _int: ...
def sparse_mask(self, mask: Tensor) -> Tensor: ...
def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
def split_with_sizes(self, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def sqrt(self) -> Tensor: ...
def sqrt_(self) -> Tensor: ...
@overload
def squeeze(self) -> Tensor: ...
@overload
def squeeze(self, dim: _int) -> Tensor: ...
@overload
def squeeze(self, dim: Union[str, None]) -> Tensor: ...
@overload
def squeeze_(self) -> Tensor: ...
@overload
def squeeze_(self, dim: _int) -> Tensor: ...
@overload
def squeeze_(self, dim: Union[str, None]) -> Tensor: ...
def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def std(self, unbiased: _bool=True) -> Tensor: ...
@overload
def std(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
@overload
def std(self, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
def storage(self) -> Storage: ...
def storage_offset(self) -> _int: ...
@overload
def stride(self) -> Tuple[_int]: ...
@overload
def stride(self, _int) -> _int: ...
@overload
def sum(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def sum(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def sum(self, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def sum_to_size(self, size: _size) -> Tensor: ...
@overload
def sum_to_size(self, *size: _int) -> Tensor: ...
def svd(self, some: _bool=True, compute_uv: _bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
def symeig(self, eigenvectors: _bool=False, upper: _bool=True) -> Tuple[Tensor, Tensor]: ...
def t(self) -> Tensor: ...
def t_(self) -> Tensor: ...
def take(self, index: Tensor) -> Tensor: ...
def tan(self) -> Tensor: ...
def tan_(self) -> Tensor: ...
def tanh(self) -> Tensor: ...
def tanh_(self) -> Tensor: ...
@overload
def to(self, dtype: _dtype, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
@overload
def to(self, device: Optional[Union[_device, str]]=None, dtype: Optional[_dtype]=None, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
@overload
def to(self, other: Tensor, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
def to_dense(self) -> Tensor: ...
def to_mkldnn(self) -> Tensor: ...
@overload
def to_sparse(self, sparse_dim: _int) -> Tensor: ...
@overload
def to_sparse(self) -> Tensor: ...
def tolist(self) -> List: ...
def topk(self, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True) -> Tuple[Tensor, Tensor]: ...
def trace(self) -> Tensor: ...
@overload
def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
@overload
def transpose(self, dim0: Union[str, None], dim1: Union[str, None]) -> Tensor: ...
def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
def triangular_solve(self, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False) -> Tuple[Tensor, Tensor]: ...
def tril(self, diagonal: _int=0) -> Tensor: ...
def tril_(self, diagonal: _int=0) -> Tensor: ...
def triu(self, diagonal: _int=0) -> Tensor: ...
def triu_(self, diagonal: _int=0) -> Tensor: ...
def trunc(self) -> Tensor: ...
def trunc_(self) -> Tensor: ...
def type(self, dtype: Union[None, str, _dtype]=None, non_blocking: _bool=False) -> Union[str, Tensor]: ...
def type_as(self, other: Tensor) -> Tensor: ...
@overload
def unbind(self, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
@overload
def unbind(self, dim: Union[str, None]) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
@overload
def unflatten(self, dim: Union[str, None], sizes: _size, names: List[Union[str, None]]) -> Tensor: ...
@overload
def unflatten(self, dim: _int, sizes: _size, names: List[Union[str, None]]) -> Tensor: ...
def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
def uniform_(self, from_: _float=0, to: _float=1, *, generator: Generator=None) -> Tensor: ...
def unsqueeze(self, dim: _int) -> Tensor: ...
def unsqueeze_(self, dim: _int) -> Tensor: ...
def values(self) -> Tensor: ...
@overload
def var(self, unbiased: _bool=True) -> Tensor: ...
@overload
def var(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
@overload
def var(self, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
@overload
def view(self, size: _size) -> Tensor: ...
@overload
def view(self, *size: _int) -> Tensor: ...
def view_as(self, other: Tensor) -> Tensor: ...
def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
def zero_(self) -> Tensor: ...
@overload
def zeros_like_(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like_(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like_(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like_(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like__(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like__(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like__(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like__(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like___(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like___(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like___(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like___(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like____(self, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like____(self, value: Number, other: Union[Tensor, Number]) -> Tensor: ...
@overload
def zeros_like____(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def zeros_like____(self, value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
# Manually defined methods from torch/tensor.py
def __len__(self) -> _int: ...
def __iter__(self) -> Iterator[Tensor]: ...
def __contains__(self, item: Union[Tensor, Number]) -> _bool: ...
def register_hook(self, hook: Callable) -> Any: ...
def retain_grad(self) -> None: ...
def is_shared(self) -> _bool: ...
def share_memory_(self) -> None: ...
# TODO: fill in the types for these, or otherwise figure out some
# way to not have to write these out again...
def nonzero(self, *, as_tuple=True): ...
def norm(self, p="fro", dim=None, keepdim=False): ...
def stft(self, n_fft, hop_length=None, win_length=None, window=None,
center=True, pad_mode='reflect', normalized=False, onesided=True): ...
def split(self, split_size, dim=0): ...
def unique(self, sorted=True, return_inverse=False, dim=None): ...
def unique_consecutive(self, sorted=True, return_inverse=False, return_counts=False, dim=None): ...
def lu(self, pivot=True, get_infos=False): ...
#MODIFIED BY TORCHGPIPE
from .cuda import Stream
def record_stream(self, stream: Optional[Stream]) -> None: ...
#END
@overload
def __and__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __and__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __lshift__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __lshift__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __or__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __or__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __rshift__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __rshift__(self: Tensor, other: Tensor) -> Tensor: ...
@overload
def __xor__(self: Tensor, other: Number) -> Tensor: ...
@overload
def __xor__(self: Tensor, other: Tensor) -> Tensor: ...
def _adaptive_avg_pool2d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
def _addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
def _addr_(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _baddbmm_mkl_(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _batch_norm_impl_index(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor, _int]: ...
def _cast_Byte(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Char(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Double(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Float(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Half(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Int(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Long(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cast_Short(self: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size, groups: _int, benchmark: _bool, deterministic: _bool, cudnn_enabled: _bool) -> Tensor: ...
def _convolution_nogroup(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size) -> Tensor: ...
def _copy_from(self: Tensor, dst: Tensor, non_blocking: _bool=False) -> Tensor: ...
def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int=0, zero_infinity: _bool=False) -> Tuple[Tensor, Tensor]: ...
def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int, deterministic: _bool, zero_infinity: _bool) -> Tuple[Tensor, Tensor]: ...
def _cudnn_init_dropout_state(dropout: _float, train: _bool, dropout_seed: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def _cudnn_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, weight_buf: Optional[Tensor], hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ...
def _cudnn_rnn_flatten_weight(weight_arr: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, input_size: _int, mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, bidirectional: _bool) -> Tensor: ...
def _cufft_clear_plan_cache(device_index: _int) -> None: ...
def _cufft_get_plan_cache_max_size(device_index: _int) -> _int: ...
def _cufft_get_plan_cache_size(device_index: _int) -> _int: ...
def _cufft_set_plan_cache_max_size(device_index: _int, max_size: _int) -> None: ...
def _debug_has_internal_overlap(self: Tensor) -> _int: ...
def _dim_arange(like: Tensor, dim: _int) -> Tensor: ...
def _dirichlet_grad(x: Tensor, alpha: Tensor, total: Tensor) -> Tensor: ...
def _embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool=False, mode: _int=0, sparse: _bool=False, per_sample_weights: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
@overload
def _empty_affine_quantized(size: _size, *, scale: _float=1, zero_point: _int=0, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def _empty_affine_quantized(*size: _int, scale: _float=1, zero_point: _int=0, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def _empty_per_channel_affine_quantized(size: _size, *, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def _empty_per_channel_affine_quantized(*size: _int, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format]=contiguous_format, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def _fft_with_size(self: Tensor, signal_ndim: _int, complex_input: _bool, complex_output: _bool, inverse: _bool, checked_signal_sizes: _size, normalized: _bool, onesided: _bool, output_sizes: _size) -> Tensor: ...
def _fused_dropout(self: Tensor, p: _float, generator: Generator=None) -> Tuple[Tensor, Tensor]: ...
def _has_compatible_shallow_copy_type(self: Tensor, from_: Tensor) -> _bool: ...
def _index_copy_(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
def _index_put_impl_(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False, unsafe: _bool=False) -> Tensor: ...
def _log_softmax(self: Tensor, dim: _int, half_to_float: _bool) -> Tensor: ...
def _log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
def _lu_solve_helper(self: Tensor, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
def _lu_with_info(self: Tensor, pivot: _bool=True, check_errors: _bool=True) -> Tuple[Tensor, Tensor, Tensor]: ...
def _make_per_channel_quantized_tensor(self: Tensor, scale: Tensor, zero_point: Tensor, axis: _int) -> Tensor: ...
def _make_per_tensor_quantized_tensor(self: Tensor, scale: _float, zero_point: _int) -> Tensor: ...
def _masked_scale(self: Tensor, mask: Tensor, scale: _float) -> Tensor: ...
def _max(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def _min(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def _mkldnn_reshape(self: Tensor, shape: _size) -> Tensor: ...
def _mkldnn_transpose(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
def _mkldnn_transpose_(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
def _mode(self: Tensor, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def _multinomial_alias_draw(J: Tensor, q: Tensor, num_samples: _int, *, generator: Generator=None) -> Tensor: ...
def _multinomial_alias_setup(probs: Tensor) -> Tuple[Tensor, Tensor]: ...
def _nnpack_available() -> _bool: ...
def _nnpack_spatial_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Union[_int, _size], stride: Union[_int, _size]=1) -> Tensor: ...
def _pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
def _pad_packed_sequence(data: Tensor, batch_sizes: Tensor, batch_first: _bool, padding_value: Number, total_length: _int) -> Tuple[Tensor, Tensor]: ...
def _reshape_from_tensor(self: Tensor, shape: Tensor) -> Tensor: ...
def _s_where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
def _sample_dirichlet(self: Tensor, generator: Generator=None) -> Tensor: ...
def _shape_as_tensor(self: Tensor) -> Tensor: ...
def _sobol_engine_draw(quasi: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int, dtype: Optional[_dtype]) -> Tuple[Tensor, Tensor]: ...
def _sobol_engine_ff_(self: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int) -> Tensor: ...
def _sobol_engine_initialize_state_(self: Tensor, dimension: _int) -> Tensor: ...
def _sobol_engine_scramble_(self: Tensor, ltm: Tensor, dimension: _int) -> Tensor: ...
def _softmax(self: Tensor, dim: _int, half_to_float: _bool) -> Tensor: ...
def _softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, self: Tensor) -> Tensor: ...
def _sparse_addmm(self: Tensor, sparse: Tensor, dense: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def _sparse_mm(sparse: Tensor, dense: Tensor) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, *, dtype: _dtype) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, dim: Union[_int, _size]) -> Tensor: ...
@overload
def _sparse_sum(self: Tensor, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ...
def _standard_gamma(self: Tensor, generator: Generator=None) -> Tensor: ...
def _standard_gamma_grad(self: Tensor, output: Tensor) -> Tensor: ...
def _std(self: Tensor, unbiased: _bool=True) -> Tensor: ...
def _test_optional_float(self: Tensor, *, scale: Optional[_float]=None) -> Tensor: ...
def _trilinear(i1: Tensor, i2: Tensor, i3: Tensor, expand1: _size, expand2: _size, expand3: _size, sumdim: _size, unroll_dim: _int=1) -> Tensor: ...
def _unique(self: Tensor, sorted: _bool=True, return_inverse: _bool=False) -> Tuple[Tensor, Tensor]: ...
def _unique2(self: Tensor, sorted: _bool=True, return_inverse: _bool=False, return_counts: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
def _use_cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int) -> _bool: ...
def _var(self: Tensor, unbiased: _bool=True) -> Tensor: ...
def _weight_norm(v: Tensor, g: Tensor, dim: _int=0) -> Tensor: ...
def _weight_norm_cuda_interface(v: Tensor, g: Tensor, dim: _int=0) -> Tuple[Tensor, Tensor]: ...
def abs(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def abs_(self: Tensor) -> Tensor: ...
def acos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def acos_(self: Tensor) -> Tensor: ...
def adaptive_avg_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
def adaptive_max_pool1d(self: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ...
@overload
def add(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def add(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def add(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
@overload
def add(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def addbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addcdiv(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
@overload
def addcdiv(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addcmul(self: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor) -> Tensor: ...
@overload
def addcmul(self: Tensor, value: Number, tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def addmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmv(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, alpha: Number, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: ...
@overload
def addmv(beta: Number, self: Tensor, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: ...
def addmv_(self: Tensor, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def addr(self: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, alpha: Number, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor) -> Tensor: ...
@overload
def addr(beta: Number, self: Tensor, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: ...
def affine_grid_generator(theta: Tensor, size: _size, align_corners: _bool) -> Tensor: ...
@overload
def all(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def all(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def all(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def allclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
def alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def alpha_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def angle(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def any(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def any(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def any(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def arange(start: Number, end: Number, step: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
@overload
def arange(start: Number, end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
@overload
def arange(end: Number, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
def argmax(self: Tensor, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
def argmin(self: Tensor, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
@overload
def argsort(self: Tensor, dim: _int=-1, descending: _bool=False) -> Tensor: ...
@overload
def argsort(self: Tensor, dim: Union[str, None], descending: _bool=False) -> Tensor: ...
def as_strided(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_strided_(self: Tensor, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_tensor(data: Any, dtype: _dtype=None, device: Optional[_device]=None) -> Tensor: ...
def asin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def asin_(self: Tensor) -> Tensor: ...
def atan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def atan2(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def atan_(self: Tensor) -> Tensor: ...
def avg_pool1d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, ceil_mode: _bool=False, count_include_pad: _bool=True) -> Tensor: ...
@overload
def baddbmm(self: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, alpha: Number, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: ...
@overload
def baddbmm(beta: Number, self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def bartlett_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def bartlett_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ...
def batch_norm_backward_elemt(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], mean_dy: Tensor, mean_dy_xmu: Tensor) -> Tensor: ...
def batch_norm_backward_reduce(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], input_g: _bool, weight_g: _bool, bias_g: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def batch_norm_elemt(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, invstd: Tensor, eps: _float, *, out: Optional[Tensor]=None) -> Tensor: ...
def batch_norm_gather_stats(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, count: _int) -> Tuple[Tensor, Tensor]: ...
def batch_norm_gather_stats_with_counts(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, counts: _size) -> Tuple[Tensor, Tensor]: ...
def batch_norm_stats(input: Tensor, eps: _float) -> Tuple[Tensor, Tensor]: ...
def batch_norm_update_stats(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float) -> Tuple[Tensor, Tensor]: ...
@overload
def bernoulli(self: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def bernoulli(self: Tensor, p: _float, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
def bincount(self: Tensor, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
def bitwise_not(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def bitwise_xor(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def bitwise_xor(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def blackman_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def blackman_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def bmm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def can_cast(from_: _dtype, to: _dtype) -> _bool: ...
@overload
def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, None], *, out: Optional[Tensor]=None) -> Tensor: ...
def ceil(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ceil_(self: Tensor) -> Tensor: ...
def celu(self: Tensor, alpha: Number=1.0) -> Tensor: ...
def celu_(self: Tensor, alpha: Number=1.0) -> Tensor: ...
def cholesky(self: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def cholesky_inverse(self: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def cholesky_solve(self: Tensor, input2: Tensor, upper: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def chunk(self: Tensor, chunks: _int, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def clamp(self, min: _float=-inf, max: _float=inf, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_max(self: Tensor, max: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_max_(self: Tensor, max: Number) -> Tensor: ...
def clamp_min(self: Tensor, min: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def clamp_min_(self: Tensor, min: Number) -> Tensor: ...
def clone(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
def combinations(self: Tensor, r: _int=2, with_replacement: _bool=False) -> Tensor: ...
def conj(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def constant_pad_nd(self: Tensor, pad: _size, value: Number=0) -> Tensor: ...
def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, groups: _int=1) -> Tensor: ...
def conv_tbc(self: Tensor, weight: Tensor, bias: Tensor, pad: _int=0) -> Tensor: ...
def conv_transpose1d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def conv_transpose2d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def conv_transpose3d(input: Tensor, weight: Tensor, bias: Optional[Tensor]=None, stride: Union[_int, _size]=1, padding: Union[_int, _size]=0, output_padding: Union[_int, _size]=0, groups: _int=1, dilation: Union[_int, _size]=1) -> Tensor: ...
def convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: _size, padding: _size, dilation: _size, transposed: _bool, output_padding: _size, groups: _int) -> Tensor: ...
def cos(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def cos_(self: Tensor) -> Tensor: ...
def cosh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def cosh_(self: Tensor) -> Tensor: ...
def cosine_similarity(x1: Tensor, x2: Tensor, dim: _int=1, eps: _float=1e-08) -> Tensor: ...
def cross(self: Tensor, other: Tensor, dim: Optional[_int]=None, *, out: Optional[Tensor]=None) -> Tensor: ...
def cudnn_affine_grid_generator(theta: Tensor, N: _int, C: _int, H: _int, W: _int) -> Tensor: ...
def cudnn_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def cudnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def cudnn_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def cudnn_grid_sampler(self: Tensor, grid: Tensor) -> Tensor: ...
def cudnn_is_acceptable(self: Tensor) -> _bool: ...
@overload
def cumprod(self: Tensor, dim: _int, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumprod(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumsum(self: Tensor, dim: _int, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def cumsum(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
def dequantize(self: Tensor) -> Tensor: ...
def det(self: Tensor) -> Tensor: ...
def detach(self: Tensor) -> Tensor: ...
def detach_(self: Tensor) -> Tensor: ...
def diag(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def diag_embed(self: Tensor, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
def diagflat(self: Tensor, offset: _int=0) -> Tensor: ...
def diagonal(self: Tensor, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
def digamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def dist(self: Tensor, other: Tensor, p: Number=2) -> Tensor: ...
@overload
def div(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def div(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def dot(self: Tensor, tensor: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def eig(self: Tensor, eigenvectors: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def embedding(weight: Tensor, indices: Tensor, padding_idx: _int=-1, scale_grad_by_freq: _bool=False, sparse: _bool=False) -> Tensor: ...
def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool=False, mode: _int=0, sparse: _bool=False, per_sample_weights: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ...
def embedding_renorm_(self: Tensor, indices: Tensor, max_norm: _float, norm_type: _float) -> Tensor: ...
@overload
def empty(size: _size, *, names: Optional[List[Union[str, None]]], memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def empty(*size: _int, names: Optional[List[Union[str, None]]], memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def empty(size: _size, *, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def empty(*size: _int, memory_format: Optional[memory_format]=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def empty_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def empty_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def empty_strided(size: _size, stride: _size, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def eq(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def eq(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def equal(self: Tensor, other: Tensor) -> _bool: ...
def erf(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def erf_(self: Tensor) -> Tensor: ...
def erfc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def erfc_(self: Tensor) -> Tensor: ...
def erfinv(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def exp(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def exp_(self: Tensor) -> Tensor: ...
def expm1(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def expm1_(self: Tensor) -> Tensor: ...
@overload
def eye(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def eye(n: _int, m: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def fake_quantize_per_channel_affine(self: Tensor, scale: Tensor, zero_point: Tensor, axis: _int, quant_min: _int, quant_max: _int) -> Tensor: ...
def fake_quantize_per_tensor_affine(self: Tensor, scale: _float, zero_point: _int, quant_min: _int, quant_max: _int) -> Tensor: ...
def fbgemm_linear_fp16_weight(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ...
def fbgemm_linear_fp16_weight_fp32_activation(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ...
def fbgemm_linear_int8_weight(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Number, weight_zero_point: Number, bias: Tensor) -> Tensor: ...
def fbgemm_linear_int8_weight_fp32_activation(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Number, weight_zero_point: Number, bias: Tensor) -> Tensor: ...
def fbgemm_linear_quantize_weight(input: Tensor) -> Tuple[Tensor, Tensor, _float, _int]: ...
def fbgemm_pack_gemm_matrix_fp16(input: Tensor) -> Tensor: ...
@overload
def fbgemm_pack_quantized_matrix(input: Tensor) -> Tensor: ...
@overload
def fbgemm_pack_quantized_matrix(input: Tensor, K: _int, N: _int) -> Tensor: ...
def feature_alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def feature_alpha_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def feature_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ...
def feature_dropout_(self: Tensor, p: _float, train: _bool) -> Tensor: ...
def fft(self: Tensor, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
@overload
def fill_(self: Tensor, value: Number) -> Tensor: ...
@overload
def fill_(self: Tensor, value: Tensor) -> Tensor: ...
@overload
def flatten(self: Tensor, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
@overload
def flatten(self: Tensor, start_dim: _int, end_dim: _int, out_dim: Union[str, None]) -> Tensor: ...
@overload
def flatten(self: Tensor, start_dim: Union[str, None], end_dim: Union[str, None], out_dim: Union[str, None]) -> Tensor: ...
@overload
def flatten(self: Tensor, dims: List[Union[str, None]], out_dim: Union[str, None]) -> Tensor: ...
def flip(self: Tensor, dims: _size) -> Tensor: ...
def floor(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def floor_(self: Tensor) -> Tensor: ...
@overload
def fmod(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def fmod(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def frac(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def frac_(self: Tensor) -> Tensor: ...
@overload
def frobenius_norm(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def frobenius_norm(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def from_file(filename: str, shared: Optional[_bool]=None, size: Optional[_int]=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def from_numpy(ndarray) -> Tensor: ...
@overload
def full(size: _size, fill_value: Number, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def full(size: _size, fill_value: Number, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def full_like(self: Tensor, fill_value: Number, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def full_like(self: Tensor, fill_value: Number, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def gather(self: Tensor, dim: _int, index: Tensor, *, sparse_grad: _bool=False, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def gather(self: Tensor, dim: Union[str, None], index: Tensor, *, sparse_grad: _bool=False, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ge(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ge(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def geqrf(self: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def ger(self: Tensor, vec2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def get_default_dtype() -> _dtype: ...
def get_num_interop_threads() -> _int: ...
def get_num_threads() -> _int: ...
def grid_sampler(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
def grid_sampler_2d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
def grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ...
def group_norm(input: Tensor, num_groups: _int, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enabled: _bool=True) -> Tensor: ...
@overload
def gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
@overload
def gt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def gt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def hamming_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def hamming_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def hamming_window(window_length: _int, periodic: _bool, alpha: _float, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def hamming_window(window_length: _int, periodic: _bool, alpha: _float, beta: _float, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def hann_window(window_length: _int, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def hann_window(window_length: _int, periodic: _bool, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def hardshrink(self: Tensor, lambd: Number=0.5) -> Tensor: ...
def histc(self: Tensor, bins: _int=100, min: Number=0, max: Number=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def hspmm(mat1: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ifft(self: Tensor, signal_ndim: _int, normalized: _bool=False) -> Tensor: ...
def imag(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def index_add(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_add(self: Tensor, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy(self: Tensor, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy(self: Tensor, dim: Union[str, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill(self: Tensor, dim: Union[str, None], index: Tensor, value: Tensor) -> Tensor: ...
def index_put(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
def index_put_(self: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
@overload
def index_select(self: Tensor, dim: _int, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def index_select(self: Tensor, dim: Union[str, None], index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def instance_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], use_input_stats: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ...
def int_repr(self: Tensor) -> Tensor: ...
def inverse(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def irfft(self: Tensor, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True, signal_sizes: _size=()) -> Tensor: ...
def is_complex(self: Tensor) -> _bool: ...
def is_distributed(self: Tensor) -> _bool: ...
def is_floating_point(self: Tensor) -> _bool: ...
def is_nonzero(self: Tensor) -> _bool: ...
def is_same_size(self: Tensor, other: Tensor) -> _bool: ...
def is_signed(self: Tensor) -> _bool: ...
def isclose(self: Tensor, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
def isfinite(self: Tensor) -> Tensor: ...
def isnan(self: Tensor) -> Tensor: ...
@overload
def kthvalue(self: Tensor, k: _int, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def kthvalue(self: Tensor, k: _int, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def layer_norm(input: Tensor, normalized_shape: _size, weight: Optional[Tensor]=None, bias: Optional[Tensor]=None, eps: _float=1e-05, cudnn_enable: _bool=True) -> Tensor: ...
@overload
def le(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def le(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lerp(self: Tensor, end: Tensor, weight: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lerp(self: Tensor, end: Tensor, weight: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def lgamma(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def linspace(start: Number, end: Number, steps: _int=100, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def log(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log10(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log10_(self: Tensor) -> Tensor: ...
def log1p(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log1p_(self: Tensor) -> Tensor: ...
def log2(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def log2_(self: Tensor) -> Tensor: ...
def log_(self: Tensor) -> Tensor: ...
@overload
def log_softmax(self: Tensor, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def log_softmax(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def logdet(self: Tensor) -> Tensor: ...
def logical_not(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def logical_xor(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def logspace(start: Number, end: Number, steps: _int=100, base: _float=10.0, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def logsumexp(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def logsumexp(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor, Tensor]: ...
@overload
def lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor, Tensor]: ...
def lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def lstsq(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def lt(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def lt(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def lu_solve(self: Tensor, LU_data: Tensor, LU_pivots: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def masked_fill(self: Tensor, mask: Tensor, value: Number) -> Tensor: ...
@overload
def masked_fill(self: Tensor, mask: Tensor, value: Tensor) -> Tensor: ...
def masked_scatter(self: Tensor, mask: Tensor, source: Tensor) -> Tensor: ...
def masked_select(self: Tensor, mask: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def matmul(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def matrix_power(self: Tensor, n: _int) -> Tensor: ...
@overload
def matrix_rank(self: Tensor, tol: _float, symmetric: _bool=False) -> Tensor: ...
@overload
def matrix_rank(self: Tensor, symmetric: _bool=False) -> Tensor: ...
@overload
def max(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def max(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def max(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def max_pool1d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def max_pool1d_with_indices(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tuple[Tensor, Tensor]: ...
def max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def max_pool3d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
@overload
def mean(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mean(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def median(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def median(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def min(self: Tensor, dim: _int, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def min(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def min(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def miopen_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def miopen_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def miopen_convolution_transpose(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, output_padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def miopen_depthwise_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int, benchmark: _bool, deterministic: _bool) -> Tensor: ...
def miopen_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ...
def mkldnn_adaptive_avg_pool2d(self: Tensor, output_size: Union[_int, _size]) -> Tensor: ...
def mkldnn_convolution(self: Tensor, weight: Tensor, bias: Optional[Tensor], padding: _size, stride: _size, dilation: _size, groups: _int) -> Tensor: ...
def mkldnn_convolution_backward_weights(weight_size: _size, grad_output: Tensor, self: Tensor, padding: _size, stride: _size, dilation: _size, groups: _int, bias_defined: _bool) -> Tuple[Tensor, Tensor]: ...
def mkldnn_max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def mm(self: Tensor, mat2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mode(self: Tensor, dim: _int=-1, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def mode(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def mul(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def mul(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def multinomial(self: Tensor, num_samples: _int, replacement: _bool=False, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
def mv(self: Tensor, vec: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def mvlgamma(self: Tensor, p: _int) -> Tensor: ...
def narrow(self: Tensor, dim: _int, start: _int, length: _int) -> Tensor: ...
def native_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def native_layer_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], M: _int, N: _int, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ...
def native_norm(self: Tensor, p: Number=2) -> Tensor: ...
@overload
def ne(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def ne(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def neg(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def neg_(self: Tensor) -> Tensor: ...
def norm_except_dim(v: Tensor, pow: _int=2, dim: _int=0) -> Tensor: ...
@overload
def normal(mean: Tensor, std: _float=1, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def normal(mean: _float, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def normal(mean: Tensor, std: Tensor, *, generator: Generator=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def normal(mean: _float, std: _float, size: _size, *, generator: Generator=None, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def nuclear_norm(self: Tensor, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def nuclear_norm(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def numel(self: Tensor) -> _int: ...
@overload
def ones(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def ones(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def ones(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def ones(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def ones_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def ones_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def orgqr(self: Tensor, input2: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def ormqr(self: Tensor, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
def pairwise_distance(x1: Tensor, x2: Tensor, p: _float=2, eps: _float=1e-06, keepdim: _bool=False) -> Tensor: ...
def pdist(self: Tensor, p: _float=2) -> Tensor: ...
def pinverse(self: Tensor, rcond: _float=1e-15) -> Tensor: ...
def pixel_shuffle(self: Tensor, upscale_factor: _int) -> Tensor: ...
def poisson(self: Tensor, generator: Generator=None) -> Tensor: ...
def poisson_nll_loss(input: Tensor, target: Tensor, log_input: _bool, full: _bool, eps: _float, reduction: _int) -> Tensor: ...
def polygamma(n: _int, self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Tensor, exponent: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Tensor, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def pow(self: Number, exponent: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def prelu(self: Tensor, weight: Tensor) -> Tensor: ...
@overload
def prod(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def prod(self: Tensor, dim: Union[str, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
def promote_types(type1: _dtype, type2: _dtype) -> _dtype: ...
def q_per_channel_axis(self: Tensor) -> _int: ...
def q_per_channel_scales(self: Tensor) -> Tensor: ...
def q_per_channel_zero_points(self: Tensor) -> Tensor: ...
def q_scale(self: Tensor) -> _float: ...
def q_zero_point(self: Tensor) -> _int: ...
def qr(self: Tensor, some: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def quantize_per_channel(self: Tensor, scales: Tensor, zero_points: Tensor, axis: _int, dtype: _dtype) -> Tensor: ...
def quantize_per_tensor(self: Tensor, scale: _float, zero_point: _int, dtype: _dtype) -> Tensor: ...
@overload
def quantized_gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def quantized_gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def quantized_gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
@overload
def quantized_lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool, *, dtype: Optional[_dtype]=None, use_dynamic: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
@overload
def quantized_lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, *, dtype: Optional[_dtype]=None, use_dynamic: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
def quantized_lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tuple[Tensor, Tensor]: ...
def quantized_max_pool2d(self: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size]=(), padding: Union[_int, _size]=0, dilation: Union[_int, _size]=1, ceil_mode: _bool=False) -> Tensor: ...
def quantized_rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
def quantized_rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Number, scale_hh: Number, zero_point_ih: Number, zero_point_hh: Number) -> Tensor: ...
@overload
def rand(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand(size: _size, *, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand(*size: _int, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def rand_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def rand_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randint(low: _int, high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
@overload
def randint(high: _int, size: _size, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
@overload
def randint_like(self: Tensor, high: _int, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def randint_like(self: Tensor, low: _int, high: _int, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def randint_like(self: Tensor, high: _int, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randint_like(self: Tensor, low: _int, high: _int, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(size: _size, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(*size: _int, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(size: _size, *, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn(*size: _int, generator: Generator, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randn_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def randn_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randperm(n: _int, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def randperm(n: _int, *, generator: Generator, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def range(start: Number, end: Number, step: Number=1, *, out: Optional[Tensor]=None, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
def real(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def reciprocal(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def reciprocal_(self: Tensor) -> Tensor: ...
def relu(self: Tensor) -> Tensor: ...
def relu_(self: Tensor) -> Tensor: ...
@overload
def remainder(self: Tensor, other: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def remainder(self: Tensor, other: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def renorm(self: Tensor, p: Number, dim: _int, maxnorm: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def repeat_interleave(repeats: Tensor) -> Tensor: ...
@overload
def repeat_interleave(self: Tensor, repeats: Tensor, dim: Optional[_int]=None) -> Tensor: ...
@overload
def repeat_interleave(self: Tensor, repeats: _int, dim: Optional[_int]=None) -> Tensor: ...
def reshape(self: Tensor, shape: _size) -> Tensor: ...
def resize_as_(self: Tensor, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def result_type(tensor: Tensor, other: Tensor) -> _dtype: ...
@overload
def result_type(tensor: Tensor, other: Number) -> _dtype: ...
@overload
def result_type(scalar: Number, tensor: Tensor) -> _dtype: ...
@overload
def result_type(scalar1: Number, scalar2: Number) -> _dtype: ...
def rfft(self: Tensor, signal_ndim: _int, normalized: _bool=False, onesided: _bool=True) -> Tensor: ...
@overload
def rnn_relu(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def rnn_relu(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
@overload
def rnn_tanh(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ...
@overload
def rnn_tanh(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ...
def rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor]=None, b_hh: Optional[Tensor]=None) -> Tensor: ...
def roll(self: Tensor, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
def rot90(self: Tensor, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
def round(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def round_(self: Tensor) -> Tensor: ...
def rrelu(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: _bool=False, generator: Generator=None) -> Tensor: ...
def rrelu_(self: Tensor, lower: Number=0.125, upper: Number=0.3333333333333333, training: _bool=False, generator: Generator=None) -> Tensor: ...
def rsqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def rsqrt_(self: Tensor) -> Tensor: ...
@overload
def rsub(self: Tensor, other: Tensor, *, alpha: Number=1) -> Tensor: ...
@overload
def rsub(self: Tensor, other: Number, alpha: Number=1) -> Tensor: ...
def scalar_tensor(s: Number, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def scatter(self: Tensor, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self: Tensor, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter(self: Tensor, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self: Tensor, dim: Union[str, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter_add(self: Tensor, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter_add(self: Tensor, dim: Union[str, None], index: Tensor, src: Tensor) -> Tensor: ...
@overload
def select(self: Tensor, dim: Union[str, None], index: _int) -> Tensor: ...
@overload
def select(self: Tensor, dim: _int, index: _int) -> Tensor: ...
def selu(self: Tensor) -> Tensor: ...
def selu_(self: Tensor) -> Tensor: ...
def set_flush_denormal(mode: _bool) -> _bool: ...
def set_num_interop_threads(num: _int) -> None: ...
def set_num_threads(num: _int) -> None: ...
def sigmoid(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sigmoid_(self: Tensor) -> Tensor: ...
def sign(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sin(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sin_(self: Tensor) -> Tensor: ...
def sinh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sinh_(self: Tensor) -> Tensor: ...
def slogdet(self: Tensor) -> Tuple[Tensor, Tensor]: ...
def smm(self: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def softmax(self: Tensor, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def softmax(self: Tensor, dim: Union[str, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def solve(self: Tensor, A: Tensor, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def sort(self: Tensor, dim: _int=-1, descending: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
@overload
def sort(self: Tensor, dim: Union[str, None], descending: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def sparse_coo_tensor(indices: Tensor, values: Union[Tensor,List], size: Optional[_size]=None, *, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def split_with_sizes(self: Tensor, split_sizes: _size, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def sqrt(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def sqrt_(self: Tensor) -> Tensor: ...
@overload
def squeeze(self: Tensor) -> Tensor: ...
@overload
def squeeze(self: Tensor, dim: _int) -> Tensor: ...
@overload
def squeeze(self: Tensor, dim: Union[str, None]) -> Tensor: ...
@overload
def sspaddmm(self: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sspaddmm(beta: Number, self: Tensor, alpha: Number, mat1: Tensor, mat2: Tensor) -> Tensor: ...
@overload
def sspaddmm(beta: Number, self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: ...
def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, unbiased: _bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def std_mean(self: Tensor, unbiased: _bool=True) -> Tuple[Tensor, Tensor]: ...
@overload
def std_mean(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def std_mean(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def sub(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sub(input: Union[Tensor, Number], value: Number, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sub(self: Tensor, alpha: Number, other: Tensor) -> Tensor: ...
@overload
def sub(self: Tensor, alpha: Number, other: Tensor, *, out: Tensor) -> Tensor: ...
@overload
def sum(self: Tensor, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def sum(self: Tensor, dim: List[Union[str, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None, out: Optional[Tensor]=None) -> Tensor: ...
def svd(self: Tensor, some: _bool=True, compute_uv: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor, Tensor]: ...
def symeig(self: Tensor, eigenvectors: _bool=False, upper: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def t(self: Tensor) -> Tensor: ...
def take(self: Tensor, index: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tan(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tan_(self: Tensor) -> Tensor: ...
def tanh(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def tanh_(self: Tensor) -> Tensor: ...
def tensor(data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
def threshold(self: Tensor, threshold: Number, value: Number, *, out: Optional[Tensor]=None) -> Tensor: ...
def threshold_(self: Tensor, threshold: Number, value: Number) -> Tensor: ...
def topk(self: Tensor, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def trace(self: Tensor) -> Tensor: ...
@overload
def transpose(self: Tensor, dim0: _int, dim1: _int) -> Tensor: ...
@overload
def transpose(self: Tensor, dim0: Union[str, None], dim1: Union[str, None]) -> Tensor: ...
@overload
def trapz(y: Tensor, x: Tensor, *, dim: _int=-1) -> Tensor: ...
@overload
def trapz(y: Tensor, *, dx: _float=1, dim: _int=-1) -> Tensor: ...
def triangular_solve(self: Tensor, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False, *, out: Optional[Tensor]=None) -> Tuple[Tensor, Tensor]: ...
def tril(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def tril_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def triu(self: Tensor, diagonal: _int=0, *, out: Optional[Tensor]=None) -> Tensor: ...
def triu_indices(row: _int, col: _int, offset: _int=0, *, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
def trunc(self: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...
def trunc_(self: Tensor) -> Tensor: ...
@overload
def unbind(self: Tensor, dim: _int=0) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
@overload
def unbind(self: Tensor, dim: Union[str, None]) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def unique_dim(self: Tensor, dim: _int, sorted: _bool=True, return_inverse: _bool=False, return_counts: _bool=False) -> Tuple[Tensor, Tensor, Tensor]: ...
def unsqueeze(self: Tensor, dim: _int) -> Tensor: ...
@overload
def var(self: Tensor, unbiased: _bool=True, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def var(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def var(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False, *, out: Optional[Tensor]=None) -> Tensor: ...
@overload
def var_mean(self: Tensor, unbiased: _bool=True) -> Tuple[Tensor, Tensor]: ...
@overload
def var_mean(self: Tensor, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def var_mean(self: Tensor, dim: List[Union[str, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tuple[Tensor, Tensor]: ...
@overload
def where(condition: Tensor, self: Tensor, other: Tensor) -> Tensor: ...
@overload
def where(condition: Tensor) -> Union[Tuple[Tensor, ...], List[Tensor]]: ...
def zero_(self: Tensor) -> Tensor: ...
@overload
def zeros(size: _size, *, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def zeros(*size: _int, names: Optional[List[Union[str, None]]], out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def zeros(size: _size, *, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def zeros(*size: _int, out: Optional[Tensor]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
@overload
def zeros_like(self: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def zeros_like(self: Tensor, *, memory_format: Optional[memory_format]=None, dtype: _dtype=None, layout: _layout=strided, device: Union[_device, str, None]=None, requires_grad:_bool=False) -> Tensor: ...
class DoubleStorage(Storage): ...
class FloatStorage(Storage): ...
class LongStorage(Storage): ...
class IntStorage(Storage): ...
class ShortStorage(Storage): ...
class CharStorage(Storage): ...
class ByteStorage(Storage): ...
class BoolStorage(Storage): ...
class DoubleTensor(Tensor): ...
class FloatTensor(Tensor): ...
class LongTensor(Tensor): ...
class IntTensor(Tensor): ...
class ShortTensor(Tensor): ...
class CharTensor(Tensor): ...
class ByteTensor(Tensor): ...
class BoolTensor(Tensor): ...
float32: dtype = ...
float: dtype = ...
float64: dtype = ...
double: dtype = ...
float16: dtype = ...
half: dtype = ...
uint8: dtype = ...
int8: dtype = ...
int16: dtype = ...
short: dtype = ...
int32: dtype = ...
int: dtype = ...
int64: dtype = ...
long: dtype = ...
complex32: dtype = ...
complex64: dtype = ...
complex128: dtype = ...
quint8: dtype = ...
qint8: dtype = ...
qint32: dtype = ...
bool: dtype = ...
# Pure Python functions defined in torch/__init__.py
def typename(obj) -> str: ...
def is_tensor(obj) -> _bool: ...
def is_storage(obj) -> _bool: ...
def set_default_tensor_type(type) -> None: ... # ick, what a bad legacy API
def set_default_dtype(d : _dtype) -> None: ...
def manager_path() -> str: ...
def compiled_with_cxx11_abi() -> _bool: ...
# The return value of this function depends on the value of `as_tuple`,
# (similar to `unique`, `lu`, etc.); as such, it is not
# possible to type correctly
def nonzero(input: Tensor, *, out: Optional[Tensor]=None, as_tuple: Optional[_bool]=None): ...
#MODIFIED BY TORCHGPIPE
def is_grad_enabled() -> _bool: ...
__version__: str = ...
#END
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import Any, Callable, Union, Tuple, Sequence, Optional
from .. import Tensor
from .grad_mode import no_grad as no_grad, enable_grad as enable_grad, \
set_grad_enabled as set_grad_enabled
from .profiler import record_function
# TODO make Variable and Function more precise
class Variable:
...
class Function:
@staticmethod
def forward(ctx: Any, *args: Any, **kwargs: Any) -> Any: ...
@staticmethod
def backward(ctx: Any, *grad_outputs: Any) -> Any: ...
#MODIFIED BY TORCHGPIPE
@staticmethod
def apply(*args: Any, **kwargs: Any) -> Any: ...
#END
class NestedIOFunction(Function):
# The 'type: ignore' statements are needed here because these functions are declared as '@staticmethod' in the
# superclass (Function) but are instance methods here, which mypy reports as incomptabile.
def backward(self, *gradients: Any) -> Any: ... # type: ignore
def forward(self, *args: Any) -> tuple: ... # type: ignore
def save_for_backward(self, *args: Any) -> None:...
def mark_dirty(self, *args: Any, **kwargs: Any) -> None:...
def mark_non_differentiable(self, *args: Any, **kwargs: Any) -> None: ...
def forward_extended(self, *input: Any) -> None:...
def backward_extended(self, *grad_output: Any) -> None: ...
# 'func' accepts a vararg of tensors, which isn't expressable in the type system at the moment.
# If https://mypy.readthedocs.io/en/latest/additional_features.html?highlight=callable#extended-callable-types is accepted,
# the '...' first argument of Callabe can be replaced with VarArg(Tensor).
# For now, we permit any input.
def gradcheck(func: Callable[..., Union[Tensor, Tuple[Tensor, ...]]], inputs: Union[Tensor, Tuple[Tensor, ...]], eps: float=..., atol: float=..., rtol: float=..., raise_exception: bool=..., check_sparse_nnz: bool=...) -> bool: ...
def gradgradcheck(func: Callable[..., Union[Tensor, Tuple[Tensor, ...]]], inputs: Union[Tensor, Tuple[Tensor, ...]], eps: float=..., atol: float=..., rtol: float=..., gen_non_contig_grad_outputs: bool=..., raise_exception: bool=...) -> bool: ...
class detect_anomaly:
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> bool: ...
class set_detect_anomaly:
def __init__(self, mode: bool) -> None: ...
def __enter__(self) -> None:...
def __exit__(self, *args: Any) -> bool: ...
_TensorOrTensors = Union[Tensor, Sequence[Tensor]]
def backward(tensors: _TensorOrTensors, grad_tensors: Optional[_TensorOrTensors]=..., retain_graph: Optional[bool]=..., create_graph: bool=...) -> None: ...
def grad(outputs: _TensorOrTensors, inputs: _TensorOrTensors, grad_outputs: Optional[_TensorOrTensors]=..., retain_graph: Optional[bool]=..., create_graph: bool=..., only_inputs: bool=..., allow_unused: bool=...) -> Tuple[Tensor, ...]: ...
\ No newline at end of file
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import Any, Callable, Optional, TypeVar
# Used for annotating the decorator usage of 'no_grad' and 'enable_grad'.
# See https://mypy.readthedocs.io/en/latest/generics.html#declaring-decorators
FuncType = Callable[..., Any]
T = TypeVar('T', bound=FuncType)
class no_grad:
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> Optional[bool]: ...
def __call__(self, func: T) -> T: ...
class enable_grad:
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> Optional[bool]: ...
def __call__(self, func: T) -> T: ...
class set_grad_enabled:
def __init__(self, mode: bool) -> None: ...
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> Optional[bool]: ...
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import Any, ContextManager, Optional
class record_function(ContextManager[None]):
def __init__(self, name: str) -> None: ...
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> Optional[bool]: ...
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#MODIFIED BY TORCHGPIPE
from . import cudnn
#END
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#MODIFIED BY TORCHGPIPE
def version() -> int: ...
#END
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import Optional, Tuple, Union
import ctypes
from .. import device as _device
def is_available() -> bool: ...
def init() -> None: ...
class cudaStatus:
SUCCESS: int
ERROR_NOT_READY: int
class CudaError:
def __init__(self, code: int) -> None: ...
class _CudaDeviceProperties:
name: str
major: int
minor: int
multi_processor_count: int
total_memory: int
is_integrated: int
is_multi_gpu_board: int
_device_t = Union[_device, int]
def check_error(res: int) -> None: ...
def device_count() -> int: ...
def empty_cache() -> None: ...
def synchronize(device: _device_t) -> None: ...
def set_device(device: _device_t) -> None: ...
def get_device_capability(device: Optional[_device_t]=...) -> Tuple[int, int]: ...
def get_device_name(device: Optional[_device_t]=...) -> str: ...
def get_device_properties(device: _device_t) -> _CudaDeviceProperties: ...
def current_device() -> int: ...
def memory_allocated(device: Optional[_device_t]=...) -> int: ...
def max_memory_allocated(device: Optional[_device_t]=...) -> int: ...
def reset_max_memory_allocated(device: Optional[_device_t]=...) -> None: ...
def memory_cached(device: Optional[_device_t]=...) -> int: ...
def max_memory_cached(device: Optional[_device_t]=...) -> int: ...
def reset_max_memory_cached(device: Optional[_device_t]=...) -> None: ...
def cudart() -> ctypes.CDLL: ...
def find_cuda_windows_lib() -> Optional[ctypes.CDLL]: ...
#MODIFIED BY TORCHGPIPE
from .. import ByteTensor
def set_rng_state(new_state: ByteTensor, device: _device_t = ...) -> None: ...
def get_rng_state(device: _device_t = ...) -> ByteTensor: ...
#END
#MODIFIED BY TORCHGPIPE
from typing import Any
class device:
def __init__(self, device: _device_t = ...) -> None: ...
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> None: ...
class Stream:
device: _device
def __init__(self, device: _device_t = ..., priority: int = ...) -> None: ...
def synchronize(self) -> None: ...
def wait_stream(self, stream: Stream) -> None: ...
class stream:
def __init__(self, stream: Optional[Stream] = ...) -> None: ...
def __enter__(self) -> None: ...
def __exit__(self, *args: Any) -> None: ...
def current_stream(device: Optional[_device_t]) -> Stream: ...
def default_stream(device: Optional[_device_t]) -> Stream: ...
#END
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#MODIFIED BY TORCHGPIPE
from typing import Iterable, Optional, Tuple
from torch import Tensor
def scatter(tensor: Tensor,
devices: Iterable[int],
chunk_sizes: Optional[Iterable[int]] = None,
dim: int = 0,
) -> Tuple[Tensor, ...]: ...
def gather(tensors: Iterable[Tensor],
dim: int = 0,
destination: Optional[int] = None,
) -> Tensor: ...
#END
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import Any
from torch import Tensor
def get_rank(group: Any) -> int: ...
def get_world_size(group: Any) -> int: ...
def broadcast(tensor: Tensor, src: Any, group: Any, async_op: Any = False): ...
class group(object):
WORLD: Any
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from .modules import *
from .parameter import Parameter as Parameter
from .parallel import DataParallel as DataParallel
from . import functional as functional
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from typing import TypeVar, Union, Tuple
from .. import Tensor
# Create some useful type aliases
# Template for arguments which can be supplied as a tuple, or which can be a scalar which PyTorch will internally
# broadcast to a tuple.
# Comes in several variants: A tuple of unknown size, and a fixed-size tuple for 1d, 2d, or 3d operations.
T = TypeVar('T')
_scalar_or_tuple_any_t = Union[T, Tuple[T, ...]]
_scalar_or_tuple_1_t = Union[T, Tuple[T]]
_scalar_or_tuple_2_t = Union[T, Tuple[T, T]]
_scalar_or_tuple_3_t = Union[T, Tuple[T, T, T]]
_scalar_or_tuple_4_t = Union[T, Tuple[T, T, T, T]]
_scalar_or_tuple_5_t = Union[T, Tuple[T, T, T, T, T]]
_scalar_or_tuple_6_t = Union[T, Tuple[T, T, T, T, T, T]]
# For arguments which represent size parameters (eg, kernel size, padding)
_size_any_t = _scalar_or_tuple_any_t[int]
_size_1_t = _scalar_or_tuple_1_t[int]
_size_2_t = _scalar_or_tuple_2_t[int]
_size_3_t = _scalar_or_tuple_3_t[int]
_size_4_t = _scalar_or_tuple_4_t[int]
_size_5_t = _scalar_or_tuple_5_t[int]
_size_6_t = _scalar_or_tuple_6_t[int]
# For arguments that represent a ratio to adjust each dimension of an input with (eg, upsampling parameters)
_ratio_2_t = _scalar_or_tuple_2_t[float]
_ratio_3_t = _scalar_or_tuple_3_t[float]
_ratio_any_t = _scalar_or_tuple_any_t[float]
_tensor_list_t = _scalar_or_tuple_any_t[Tensor]
# For the return value of max pooling operations that may or may not return indices.
# With the proposed 'Literal' feature to Python typing, it might be possible to
# eventually eliminate this.
_maybe_indices_t = _scalar_or_tuple_2_t[Tensor]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment