#include #include #include #include #include #include #include #include #include using namespace std; using namespace dlib; // ---------------------------------------------------------------------------------------- template using ares = relu>>>>>>>; template using res = relu>>>>>>>; std::tuple res_ ( unsigned long outputs, unsigned long stride = 1 ) { return std::make_tuple(relu_(), bn_(CONV_MODE), add_prev1_(), con_(outputs,3,3,stride,stride), relu_(), bn_(CONV_MODE), con_(outputs,3,3,stride,stride)); } // ---------------------------------------------------------------------------------------- void randomly_crop_image ( const matrix& img, matrix& crop, dlib::rand& rnd ) { // figure out what rectangle we want to crop from the image auto scale = 1-rnd.get_random_double()*0.2; auto size = scale*std::min(img.nr(), img.nc()); rectangle rect(size, size); // randomly shift the box around point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()), rnd.get_random_32bit_number()%(img.nr()-rect.height())); rect = move_rect(rect, offset); // now crop it out as a 250x250 image. extract_image_chip(img, chip_details(rect, chip_dims(250,250)), crop); // Also randomly flip the image if (rnd.get_random_double() > 0.5) crop = fliplr(crop); // And then randomly adjust the color balance and gamma. disturb_colors(crop, rnd); } void randomly_crop_images ( const matrix& img, dlib::array>& crops, dlib::rand& rnd, long num_crops ) { std::vector dets; for (long i = 0; i < num_crops; ++i) { // figure out what rectangle we want to crop from the image auto scale = 1-rnd.get_random_double()*0.2; auto size = scale*std::min(img.nr(), img.nc()); rectangle rect(size, size); // randomly shift the box around point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()), rnd.get_random_32bit_number()%(img.nr()-rect.height())); rect = move_rect(rect, offset); dets.push_back(chip_details(rect, chip_dims(250,250))); } extract_image_chips(img, dets, crops); for (auto&& img : crops) { // Also randomly flip the image if (rnd.get_random_double() > 0.5) img = fliplr(img); // And then randomly adjust the color balance and gamma. disturb_colors(img, rnd); } } // ---------------------------------------------------------------------------------------- struct image_info { string filename; string label; unsigned long numeric_label; }; std::vector get_mit67_listing( const std::string& images_folder ) { std::vector results; image_info temp; temp.numeric_label = 0; // loop over all the scene types in the dataset, each is contained in a subfolder. auto subdirs = directory(images_folder).get_dirs(); // sort the sub directories so the numeric labels will be assigned in sorted order. std::sort(subdirs.begin(), subdirs.end()); regex is_gif(".*_gif.jpg"); for (auto subdir : subdirs) { // Now get all the images in this scene type temp.label = subdir.name(); for (auto image_file : subdir.get_files()) { // Ignore gif files in this dataset since dlib::load_image() doesn't support // them and there are only a tiny number of them. temp.filename = image_file; if (regex_match(temp.filename, is_gif)) continue; results.push_back(temp); } ++temp.numeric_label; } return results; } unsigned long vote ( const std::vector& votes ) { std::vector counts(max(mat(votes))+1); for (auto i : votes) counts[i]++; return index_of_max(mat(counts)); } int main(int argc, char** argv) try { if (argc != 3) { cout << "give MIT 67 scene folder as input and a weight decay value!" << endl; return 1; } auto listing = get_mit67_listing(argv[1]); cout << "images in dataset: " << listing.size() << endl; if (listing.size() == 0 || listing.back().numeric_label != 66) { cout << "Didn't find the MIT 67 scene dataset. Are you sure you gave the correct folder?" << endl; cout << "Give the Images folder as an argument to this program." << endl; return 1; } const double initial_step_size = 0.1; const double weight_decay = sa = argv[2]; typedef loss_multiclass_log >>>>>>>>>>>>>>>> net_type; net_type net(fc_(67), avg_pool_(1000,1000,1000,1000), res_(512),res_(512,2), res_(256),res_(256,2), res_(128),res_(128,2), res_(64), res_(64), max_pool_(3,3,2,2), relu_(), bn_(CONV_MODE), con_(64,7,7,2,2) ); cout << "initial step size: "<< initial_step_size << endl; cout << "weight decay: " << weight_decay << endl; dnn_trainer trainer(net,sgd(initial_step_size, weight_decay)); trainer.be_verbose(); trainer.set_synchronization_file("mit67_sync3_"+cast_to_string(weight_decay), std::chrono::minutes(5)); std::vector> samples; std::vector labels; randomize_samples(listing); const size_t training_part = listing.size()*0.7; dlib::rand rnd; const bool do_training = true; if (do_training) { while(trainer.get_step_size() >= 1e-4) { samples.clear(); labels.clear(); // make a 64 image mini-batch matrix img, crop; while(samples.size() < 64) { auto l = listing[rnd.get_random_32bit_number()%training_part]; load_image(img, l.filename); randomly_crop_image(img, crop, rnd); samples.push_back(crop); labels.push_back(l.numeric_label); } trainer.train_one_step(samples, labels); } // wait for threaded processing to stop. trainer.get_net(); net.clean(); cout << "saving network" << endl; serialize("mit67_network3_"+cast_to_string(weight_decay)+".dat") << net; } const bool test_network = true; if (test_network) { typedef loss_multiclass_log >>>>>>>>>>>>>>>> anet_type; anet_type net; deserialize("mit67_network3_"+cast_to_string(weight_decay)+".dat") >> net; dlib::array> images; std::vector labels; matrix img, crop; cout << "loading images..." << endl; int num_right = 0; int num_wrong = 0; console_progress_indicator pbar(training_part); for (size_t i = 0; i < training_part; ++i) { pbar.print_status(i); load_image(img, listing[i].filename); randomly_crop_images(img, images, rnd, 16); unsigned long predicted_label = vote(net(images, 32)); if (predicted_label == listing[i].numeric_label) ++num_right; else ++num_wrong; } cout << "\ntraining num_right: " << num_right << endl; cout << "training num_wrong: " << num_wrong << endl; cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl; pbar.reset(listing.size()-training_part); num_right = 0; num_wrong = 0; for (size_t i = training_part; i < listing.size(); ++i) { pbar.print_status(i-training_part); load_image(img, listing[i].filename); randomly_crop_images(img, images, rnd, 16); unsigned long predicted_label = vote(net(images, 32)); if (predicted_label == listing[i].numeric_label) ++num_right; else ++num_wrong; } cout << "\ntesting num_right: " << num_right << endl; cout << "testing num_wrong: " << num_wrong << endl; cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl; return 0; } } catch(std::exception& e) { cout << e.what() << endl; }