// Copyright (C) 2008 Davis E. King (davisking@users.sourceforge.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_OPTIMIZATIOn_ABSTRACT_ #ifdef DLIB_OPTIMIZATIOn_ABSTRACT_ #include #include #include "../matrix/matrix_abstract.h" #include "../algs.h" namespace dlib { // ---------------------------------------------------------------------------------------- template < typename funct, typename T > class line_search_funct; /*! This object is a function object that represents a line search function. Moreover, it represents a function with the signature: double l(double x) !*/ template < typename funct, typename T > const line_search_funct make_line_search_function ( const funct& f, const T& start, const T& direction ); /*! requires - is_col_vector(start) && is_col_vector(direction) && start.size() == direction.size() (i.e. start and direction should be column vectors of the same size) - f must return either a double or a column vector the same length as start - f(start + 1.5*direction) should be a valid expression ensures - if (f returns a double) then - returns a line search function that computes l(x) == f(start + x*direction) - else - returns a line search function that computes l(x) == dot(f(start + x*direction),direction). That is, we assume f is the derivative of some other function and that what f returns is a gradient vector. So the following two expressions both create the derivative of l(x): - derivative(make_line_search_function(funct,start,direction)) - make_line_search_function(derivative(funct),start,direction) !*/ template < typename funct, typename T > const line_search_funct make_line_search_function ( const funct& f, const T& start, const T& direction, double& f_out ); /*! This function is identical to the above three argument version of make_line_search_function() except that, if f() outputs a double, every time f() is evaluated its output is also stored into f_out. !*/ template < typename funct, typename T > const line_search_funct make_line_search_function ( const funct& f, const T& start, const T& direction, T& gradient_out ); /*! This function is identical to the above three argument version of make_line_search_function() except that, if f() outputs a column vector, every time f() is evaluated its output is also stored into gradient_out. !*/ // ---------------------------------------------------------------------------------------- inline double poly_min_extrap ( double f0, double d0, double f1, double d1 ); /*! ensures - let c(x) be a 3rd degree polynomial such that: - c(0) == f0 - c(1) == f1 - derivative of c(x) at x==0 is d0 - derivative of c(x) at x==1 is d1 - returns the point in the range [0,1] that minimizes the polynomial c(x) !*/ // ---------------------------------------------------------------------------------------- template < typename funct, typename funct_der > double line_search ( const funct& f, const double f0, const funct_der& der, const double d0, double rho, double sigma, double min_f ) /*! requires - 0 < rho < sigma < 1 - f and der are scalar functions of scalars (e.g. line_search_funct objects) - der is the derivative of f - f0 == f(0) - d0 == der(0) ensures - Performs a line search and uses the strong Wolfe conditions to decide when the search can stop. - rho == the parameter of the Wolfe sufficient decrease condition - sigma == the parameter of the Wolfe curvature condition - returns a value alpha such that f(alpha) is significantly closer to the minimum of f than f(0). - It is assumed that the minimum possible value of f(x) is min_f. So if an alpha is found such that f(alpha) <= min_f then the search stops immediately. - This function is also optimized for the case where der(0) is negative. I.e. positive values of the argument to f() should be in a descent direction. !*/ /* A good discussion of the Wolfe conditions and line search algorithms in general can be found in the book Practical Methods of Optimization by R. Fletcher and also in the more recent book Numerical Optimization by Nocedal and Wright. */ // ---------------------------------------------------------------------------------------- } #endif // DLIB_OPTIMIZATIOn_ABSTRACT_