// Copyright (C) 2006 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_THRESHOLDINg_ #define DLIB_THRESHOLDINg_ #include "../pixel.h" #include "thresholding_abstract.h" #include "equalize_histogram.h" namespace dlib { // ---------------------------------------------------------------------------------------- const unsigned char on_pixel = 255; const unsigned char off_pixel = 0; // ---------------------------------------------------------------------------------------- template < typename image_type > typename pixel_traits::pixel_type>::basic_pixel_type partition_pixels ( const image_type& img ) { COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::is_unsigned == true ); matrix hist; get_histogram(img,hist); // create integral histograms matrix cum_hist(hist.size()+1), cum_histi(hist.size()+1); cum_hist(0) = 0; cum_histi(0) = 0; for (long i = 0; i < hist.size(); ++i) { cum_hist(i+1) = cum_hist(i) + hist(i); cum_histi(i+1) = cum_histi(i) + hist(i)*(double)i; } auto histsum = [&](long begin, long end) { return cum_hist(end)-cum_hist(begin); }; auto histsumi = [&](long begin, long end) { return cum_histi(end)-cum_histi(begin); }; // If we split the pixels into two groups, those < thresh (the left group) and // those >= thresh (the right group), what would the sum of absolute deviations of // each pixel from the mean of its group be? total_abs(thresh) computes that // value. auto total_abs = [&](unsigned long thresh) { auto left_avg = histsumi(0,thresh); auto tmp = histsum(0,thresh); if (tmp != 0) left_avg /= tmp; auto right_avg = histsumi(thresh,hist.size()); tmp = histsum(thresh,hist.size()); if (tmp != 0) right_avg /= tmp; const long left_idx = (long)std::ceil(left_avg); const long right_idx = (long)std::ceil(right_avg); double score = 0; score += left_avg*histsum(0,left_idx) - histsumi(0,left_idx); score -= left_avg*histsum(left_idx,thresh) - histsumi(left_idx,thresh); score += right_avg*histsum(thresh,right_idx) - histsumi(thresh,right_idx); score -= right_avg*histsum(right_idx,hist.size()) - histsumi(right_idx,hist.size()); return score; }; unsigned long thresh = 0; double min_sad = std::numeric_limits::infinity(); for (long i = 0; i < hist.size(); ++i) { double sad = total_abs(i); // The 1e-13 here is to avoid jumping to a higher threshold because of rounding // error in total_abs() reporting a very slightly larger value. Really this // probably doesn't matter for any real application, but it makes the behavior // of the code more stable which is always nice. if (sad+1e-13*sad < min_sad) { min_sad = sad; thresh = i; } } return thresh; } // ---------------------------------------------------------------------------------------- template < typename in_image_type, typename out_image_type > void threshold_image ( const in_image_type& in_img_, out_image_type& out_img_, typename pixel_traits::pixel_type>::basic_pixel_type thresh ) { COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT(pixel_traits::pixel_type>::grayscale); const_image_view in_img(in_img_); image_view out_img(out_img_); // if there isn't any input image then don't do anything if (in_img.size() == 0) { out_img.clear(); return; } out_img.set_size(in_img.nr(),in_img.nc()); for (long r = 0; r < in_img.nr(); ++r) { for (long c = 0; c < in_img.nc(); ++c) { if (get_pixel_intensity(in_img[r][c]) >= thresh) assign_pixel(out_img[r][c], on_pixel); else assign_pixel(out_img[r][c], off_pixel); } } } // ---------------------------------------------------------------------------------------- template < typename image_type > void threshold_image ( image_type& img, typename pixel_traits::pixel_type>::basic_pixel_type thresh ) { threshold_image(img,img,thresh); } // ---------------------------------------------------------------------------------------- template < typename image_type > void threshold_image ( image_type& img ) { threshold_image(img,img,partition_pixels(img)); } // ---------------------------------------------------------------------------------------- template < typename in_image_type, typename out_image_type > void auto_threshold_image ( const in_image_type& in_img_, out_image_type& out_img_ ) { COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::is_unsigned == true ); COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::is_unsigned == true ); COMPILE_TIME_ASSERT(pixel_traits::pixel_type>::grayscale); image_view out_img(out_img_); // if there isn't any input image then don't do anything if (image_size(in_img_) == 0) { out_img.clear(); return; } unsigned long thresh; // find the threshold we should use matrix hist; get_histogram(in_img_,hist); const_image_view in_img(in_img_); // Start our two means (a and b) out at the ends of the histogram long a = 0; long b = hist.size()-1; bool moved_a = true; bool moved_b = true; while (moved_a || moved_b) { moved_a = false; moved_b = false; // catch the degenerate case where the histogram is empty if (a >= b) break; if (hist(a) == 0) { ++a; moved_a = true; } if (hist(b) == 0) { --b; moved_b = true; } } // now do k-means clustering with k = 2 on the histogram. moved_a = true; moved_b = true; while (moved_a || moved_b) { moved_a = false; moved_b = false; int64 a_hits = 0; int64 b_hits = 0; int64 a_mass = 0; int64 b_mass = 0; for (long i = 0; i < hist.size(); ++i) { // if i is closer to a if (std::abs(i-a) < std::abs(i-b)) { a_mass += hist(i)*i; a_hits += hist(i); } else // if i is closer to b { b_mass += hist(i)*i; b_hits += hist(i); } } long new_a = (a_mass + a_hits/2)/a_hits; long new_b = (b_mass + b_hits/2)/b_hits; if (new_a != a) { moved_a = true; a = new_a; } if (new_b != b) { moved_b = true; b = new_b; } } // put the threshold between the two means we found thresh = (a + b)/2; // now actually apply the threshold threshold_image(in_img_,out_img_,thresh); } template < typename image_type > void auto_threshold_image ( image_type& img ) { auto_threshold_image(img,img); } // ---------------------------------------------------------------------------------------- template < typename in_image_type, typename out_image_type > void hysteresis_threshold ( const in_image_type& in_img_, out_image_type& out_img_, typename pixel_traits::pixel_type>::basic_pixel_type lower_thresh, typename pixel_traits::pixel_type>::basic_pixel_type upper_thresh ) { COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT( pixel_traits::pixel_type>::has_alpha == false ); COMPILE_TIME_ASSERT(pixel_traits::pixel_type>::grayscale); DLIB_ASSERT( lower_thresh <= upper_thresh && is_same_object(in_img_, out_img_) == false, "\tvoid hysteresis_threshold(in_img_, out_img_, lower_thresh, upper_thresh)" << "\n\tYou can't use an upper_thresh that is less than your lower_thresh" << "\n\tlower_thresh: " << lower_thresh << "\n\tupper_thresh: " << upper_thresh << "\n\tis_same_object(in_img_,out_img_): " << is_same_object(in_img_,out_img_) ); const_image_view in_img(in_img_); image_view out_img(out_img_); // if there isn't any input image then don't do anything if (in_img.size() == 0) { out_img.clear(); return; } out_img.set_size(in_img.nr(),in_img.nc()); assign_all_pixels(out_img, off_pixel); const long size = 1000; long rstack[size]; long cstack[size]; // now do the thresholding for (long r = 0; r < in_img.nr(); ++r) { for (long c = 0; c < in_img.nc(); ++c) { typename pixel_traits::pixel_type>::basic_pixel_type p; assign_pixel(p,in_img[r][c]); if (p >= upper_thresh) { // now do line following for pixels >= lower_thresh. // set the stack position to 0. long pos = 1; rstack[0] = r; cstack[0] = c; while (pos > 0) { --pos; const long r = rstack[pos]; const long c = cstack[pos]; // This is the base case of our recursion. We want to stop if we hit a // pixel we have already visited. if (out_img[r][c] == on_pixel) continue; out_img[r][c] = on_pixel; // put the neighbors of this pixel on the stack if they are bright enough if (r-1 >= 0) { if (pos < size && get_pixel_intensity(in_img[r-1][c]) >= lower_thresh) { rstack[pos] = r-1; cstack[pos] = c; ++pos; } if (pos < size && c-1 >= 0 && get_pixel_intensity(in_img[r-1][c-1]) >= lower_thresh) { rstack[pos] = r-1; cstack[pos] = c-1; ++pos; } if (pos < size && c+1 < in_img.nc() && get_pixel_intensity(in_img[r-1][c+1]) >= lower_thresh) { rstack[pos] = r-1; cstack[pos] = c+1; ++pos; } } if (pos < size && c-1 >= 0 && get_pixel_intensity(in_img[r][c-1]) >= lower_thresh) { rstack[pos] = r; cstack[pos] = c-1; ++pos; } if (pos < size && c+1 < in_img.nc() && get_pixel_intensity(in_img[r][c+1]) >= lower_thresh) { rstack[pos] = r; cstack[pos] = c+1; ++pos; } if (r+1 < in_img.nr()) { if (pos < size && get_pixel_intensity(in_img[r+1][c]) >= lower_thresh) { rstack[pos] = r+1; cstack[pos] = c; ++pos; } if (pos < size && c-1 >= 0 && get_pixel_intensity(in_img[r+1][c-1]) >= lower_thresh) { rstack[pos] = r+1; cstack[pos] = c-1; ++pos; } if (pos < size && c+1 < in_img.nc() && get_pixel_intensity(in_img[r+1][c+1]) >= lower_thresh) { rstack[pos] = r+1; cstack[pos] = c+1; ++pos; } } } // end while (pos >= 0) } else { out_img[r][c] = off_pixel; } } } } // ---------------------------------------------------------------------------------------- } #endif // DLIB_THRESHOLDINg_