Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
d693e8f4
Commit
d693e8f4
authored
May 20, 2012
by
Davis King
Browse files
updated docs
parent
27fdfd75
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
57 additions
and
10 deletions
+57
-10
docs/docs/index.xml
docs/docs/index.xml
+10
-4
docs/docs/release_notes.xml
docs/docs/release_notes.xml
+47
-6
No files found.
docs/docs/index.xml
View file @
d693e8f4
...
@@ -118,9 +118,13 @@
...
@@ -118,9 +118,13 @@
<li>
Box-constrained derivative-free optimization via the
<li>
Box-constrained derivative-free optimization via the
<a
href=
"optimization.html#find_min_bobyqa"
>
BOBYQA
</a>
algorithm
</li>
<a
href=
"optimization.html#find_min_bobyqa"
>
BOBYQA
</a>
algorithm
</li>
<li>
An implementation of the
<a
href=
"optimization.html#oca"
>
Optimized Cutting Plane Algorithm
</a></li>
<li>
An implementation of the
<a
href=
"optimization.html#oca"
>
Optimized Cutting Plane Algorithm
</a></li>
<li>
Several
<preserve_space><a
href=
"optimization.html#solve_qp2_using_smo"
>
quadratic
</a>
<li><preserve_space><a
href=
"optimization.html#solve_qp_using_smo"
>
Several
</a>
<a
href=
"optimization.html#solve_qp2_using_smo"
>
quadratic
</a>
<a
href=
"optimization.html#solve_qp3_using_smo"
>
program
</a>
<a
href=
"optimization.html#solve_qp3_using_smo"
>
program
</a>
<a
href=
"optimization.html#solve_qp_using_smo"
>
solvers
</a></preserve_space>
</li>
<a
href=
"optimization.html#solve_qp4_using_smo"
>
solvers
</a></preserve_space>
</li>
<li>
Combinatorial optimization tools for solving
<a
href=
"optimization.html#max_cost_assignment"
>
optimal assignment
</a>
or
<a
href=
"optimization.html#min_cut"
>
min cut/max flow
</a>
problems.
</li>
<li>
A
<a
href=
"algorithms.html#bigint"
>
big integer
</a>
object
</li>
<li>
A
<a
href=
"algorithms.html#bigint"
>
big integer
</a>
object
</li>
<li>
A
<a
href=
"algorithms.html#rand"
>
random number
</a>
object
</li>
<li>
A
<a
href=
"algorithms.html#rand"
>
random number
</a>
object
</li>
</ul>
</ul>
...
@@ -141,6 +145,7 @@
...
@@ -141,6 +145,7 @@
<li>
Structural SVM tools for
<a
href=
"ml.html#structural_sequence_labeling_trainer"
>
sequence labeling
</a>
</li>
<li>
Structural SVM tools for
<a
href=
"ml.html#structural_sequence_labeling_trainer"
>
sequence labeling
</a>
</li>
<li>
Structural SVM tools for solving
<a
href=
"ml.html#structural_assignment_trainer"
>
assignment problems
</a>
</li>
<li>
Structural SVM tools for solving
<a
href=
"ml.html#structural_assignment_trainer"
>
assignment problems
</a>
</li>
<li>
Structural SVM tools for
<a
href=
"ml.html#structural_object_detection_trainer"
>
object detection
</a>
in images
</li>
<li>
Structural SVM tools for
<a
href=
"ml.html#structural_object_detection_trainer"
>
object detection
</a>
in images
</li>
<li>
Structural SVM tools for
<a
href=
"ml.html#structural_graph_labeling_trainer"
>
labeling nodes
</a>
in graphs
</li>
<li>
An online
<a
href=
"ml.html#krls"
>
kernel RLS regression
</a>
algorithm
</li>
<li>
An online
<a
href=
"ml.html#krls"
>
kernel RLS regression
</a>
algorithm
</li>
<li>
An online
<a
href=
"ml.html#svm_pegasos"
>
SVM classification
</a>
algorithm
</li>
<li>
An online
<a
href=
"ml.html#svm_pegasos"
>
SVM classification
</a>
algorithm
</li>
<li>
An online kernelized
<a
href=
"ml.html#kcentroid"
>
centroid estimator
</a>
/novelty detector
</li>
and
<li>
An online kernelized
<a
href=
"ml.html#kcentroid"
>
centroid estimator
</a>
/novelty detector
</li>
and
...
@@ -158,7 +163,8 @@
...
@@ -158,7 +163,8 @@
<li><a
href=
"bayes.html#bayesian_network_gibbs_sampler"
>
Gibbs sampler
</a>
markov chain monte
<li><a
href=
"bayes.html#bayesian_network_gibbs_sampler"
>
Gibbs sampler
</a>
markov chain monte
carlo algorithm for approximate inference in a Bayesian network.
</li>
carlo algorithm for approximate inference in a Bayesian network.
</li>
<li>
Routines for performing MAP inference in
<li>
Routines for performing MAP inference in
<a
href=
"optimization.html#find_max_factor_graph_viterbi"
>
chain-structured
</a>
or
<a
href=
"optimization.html#find_max_factor_graph_viterbi"
>
chain-structured
</a>
,
<a
href=
"optimization.html#find_max_factor_graph_potts"
>
Potts
</a>
, or
<a
href=
"optimization.html#find_max_factor_graph_nmplp"
>
general
</a>
factor graphs.
</li>
<a
href=
"optimization.html#find_max_factor_graph_nmplp"
>
general
</a>
factor graphs.
</li>
</ul>
</ul>
</li>
</li>
...
...
docs/docs/release_notes.xml
View file @
d693e8f4
...
@@ -12,12 +12,53 @@
...
@@ -12,12 +12,53 @@
<current>
<current>
New Stuff:
New Stuff:
- Improvements to linear algebra tools:
- Added the lowerbound() and upperbound() routines for thresholding dense
matrices.
- Refined the tools for working with sparse vectors. In particular,
the following functions were added: min(), max(), make_sparse_vector(),
add(), and subtract(). A number of existing routines were also updated
to work with both sparse and dense vectors so that templated code which
works on both vector types is simpler to write.
- Added the += and -= operators to the set_subm(), set_rowm(), and set_colm()
tools for operating on submatrices.
- Optimization:
- Added a new quadratic program solver, solve_qp4_using_smo(). This new
solver is useful for solving quadratic programs corresponding to
non-negative constrained primal quadratic programs.
- Added an optional non-negativity constraint to the oca optimizer.
- Added the min_cut object. It provides a method to find the minimum weight
cut on a graph.
- Added tools for finding maximum probability assignment in a Potts style
Markov random field. See the find_max_factor_graph_potts() routine for
details.
- Machine Learning:
- Added structural SVM tools for learning the parameters of a Potts style
Markov random field. See the structural_graph_labeling_trainer and
graph_labeler objects as well as their associated example program for
details.
- Added the ability to learn only non-negative weights to the
svm_c_linear_trainer.
- Improved Integration with OpenCV:
- Updated the cv_image object so it works with cv::Mat as well as IplImage.
- Added the toMat() routine for converting from a dlib style image to an
OpenCV cv::Mat image.
Non-Backwards Compatible Changes:
Non-Backwards Compatible Changes:
- Removed the dlib::sparse_vector namespace. Everything from this namespace
was moved into the normal dlib:: namespace so that code which works with
both sparse and dense vectors is more cohesive.
Bug fixes:
Bug fixes:
- Fixed a bug in find_max_factor_graph_viterbi() which sometimes occurred when
the model order was larger than the number of variables.
- Fixed a bug which caused a compiler error if you tried to call dot() on two
1x1 matrices which were statically dimensioned.
Other:
Other:
- Improved existing documentation: added pictures of the gui widgets,
added documentation of the dlib::bridge protocol, and other minor
usability improvements.
</current>
</current>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment