Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
c1433b3d
Commit
c1433b3d
authored
Nov 13, 2015
by
Davis King
Browse files
Upgrade the layer interface so that you can implement layers that operate
in-place.
parent
69490292
Changes
4
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
506 additions
and
64 deletions
+506
-64
dlib/dnn/core.h
dlib/dnn/core.h
+411
-41
dlib/dnn/core_abstract.h
dlib/dnn/core_abstract.h
+1
-0
dlib/dnn/layers.h
dlib/dnn/layers.h
+13
-11
dlib/dnn/layers_abstract.h
dlib/dnn/layers_abstract.h
+81
-12
No files found.
dlib/dnn/core.h
View file @
c1433b3d
This diff is collapsed.
Click to expand it.
dlib/dnn/core_abstract.h
View file @
c1433b3d
...
...
@@ -389,6 +389,7 @@ namespace dlib
ensures
- Back propagates the error gradient, get_gradient_input(), through this
network and uses the provided solvers to update the network parameters.
- All elements of #get_gradient_input() are set to 0.
!*/
void
clean
(
...
...
dlib/dnn/layers.h
View file @
c1433b3d
...
...
@@ -36,7 +36,7 @@ namespace dlib
}
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
computed_output
,
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
)
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
)
{
// TODO
}
...
...
@@ -89,7 +89,7 @@ namespace dlib
}
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
,
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
)
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
)
{
// compute the gradient of the parameters.
params_grad
=
trans
(
mat
(
sub
.
get_output
()))
*
mat
(
gradient_input
);
...
...
@@ -145,20 +145,22 @@ namespace dlib
{
}
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
)
void
forward_inplace
(
const
tensor
&
input
,
tensor
&
output
)
{
output
.
copy_size
(
sub
.
get_output
());
output
=
lowerbound
(
mat
(
sub
.
get_output
()),
0
);
output
=
lowerbound
(
mat
(
input
),
0
);
}
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
,
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
)
void
backward_inplace
(
const
tensor
&
computed_output
,
const
tensor
&
gradient_input
,
tensor
&
data_grad
,
tensor
&
params_grad
)
{
const
float
*
grad
=
gradient_input
.
host
();
const
float
*
in
=
sub
.
get
_output
()
.
host
();
float
*
out
=
sub
.
get_gradient_input
()
.
host
();
for
(
unsigned
long
i
=
0
;
i
<
sub
.
get
_output
()
.
size
();
++
i
)
const
float
*
in
=
computed
_output
.
host
();
float
*
out
=
data_grad
.
host
();
for
(
unsigned
long
i
=
0
;
i
<
computed
_output
.
size
();
++
i
)
{
if
(
in
[
i
]
>
0
)
out
[
i
]
=
grad
[
i
];
...
...
dlib/dnn/layers_abstract.h
View file @
c1433b3d
...
...
@@ -91,12 +91,28 @@ namespace dlib
produces an output tensor. You create an entire deep network by composing
these functions. Importantly, you are able to use a wide range of
different functions to accommodate the task you are trying to accomplish.
D
lib includes a number of common layer types but if you want to
define your
own then you simply implement a class with the same interface
as
EXAMPLE_LAYER_.
Therefore, d
lib includes a number of common layer types but if you want to
define your
own then you simply implement a class with the same interface
as
EXAMPLE_LAYER_.
Note that there is no dlib::EXAMPLE_LAYER_ type. It is shown here purely
to document the interface that a layer object must implement.
The central work of defining a layer is implementing the forward and backward
methods. When you do this you have three options:
- Implement the forward() and backward() methods according to the
specification shown below. Do not implement forward_inplace() and
backward_inplace().
- Implement the forward() and backward() methods according to the
specification shown below, except exclude the computed_output
parameter from backward(). Doing this will allow dlib to make some
layers execute in-place and therefore run a little faster and use
less memory. Do not implement forward_inplace() and
backward_inplace().
- Implement the forward_inplace() and backward_inplace() methods
according to the specification shown below. Do not implement
forward() and backward(). These in-place methods allow some types of
layers to be implemented more efficiently.
!*/
public:
...
...
@@ -152,7 +168,7 @@ namespace dlib
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
resizable_tensor
&
data_
output
);
/*!
requires
...
...
@@ -160,14 +176,14 @@ namespace dlib
- setup() has been called.
ensures
- Runs the output of the subnetwork through this layer and stores the
output
into #output. In particular, forward() can use any of the
outputs
in sub (e.g. sub.get_output(), sub.subnet().get_output(), etc.)
to
compute whatever it wants.
results
into #
data_
output. In particular, forward() can use any of the
outputs
in sub (e.g. sub.get_output(), sub.subnet().get_output(), etc.)
to
compute whatever it wants.
!*/
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
computed_output
,
const
tensor
&
computed_output
,
// this parameter is optional
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
...
...
@@ -189,7 +205,7 @@ namespace dlib
These gradients are stored into #sub and #params_grad, respectively. To be
precise, the gradients are taken of a function f(sub,get_layer_params())
which is defined thusly:
- Recalling that computed_output is a function of sub and get_layer_params()
- Recalling that computed_output is a function of
both
sub and get_layer_params()
,
since it is the result of calling forward(sub,computed_output):
let f(sub,get_layer_params()) == dot(computed_output, gradient_input)
Then we define the following gradient vectors:
...
...
@@ -207,6 +223,59 @@ namespace dlib
- layer<I>(sub).get_gradient_input() += DATA_GRADIENT_I
!*/
void
forward_inplace
(
const
tensor
&
data_input
,
tensor
&
data_output
);
/*!
requires
- have_same_dimensions(data_input,data_output) == true
- setup() has been called.
ensures
- Runs the data_input tensor though this layer and stores the output into
#data_output.
- This function supports in-place operation, i.e. having
is_same_object(data_input, data_output)==true
!*/
void
backward_inplace
(
const
tensor
&
computed_output
,
const
tensor
&
gradient_input
,
tensor
&
data_grad
,
tensor
&
params_grad
);
/*!
requires
- setup() has been called.
- computed_output is the tensor resulting from the most recent call to
forward_inplace(). This means that backward_inplace() is allowed to
cache intermediate results computed during forward_inplace() and use them
for the backward computation.
- have_same_dimensions(gradient_input, data_grad) == true
- have_same_dimensions(gradient_input, computed_output) == true
- have_same_dimensions(params_grad, get_layer_params()) == true
ensures
- This function supports in-place operation, i.e. having
is_same_object(gradient_input, data_grad)==true
- This function outputs the gradients of this layer with respect to the
input data from a sublayer and also with respect to this layer's parameters.
These gradients are stored into #data_grad and #params_grad, respectively. To be
precise, the gradients are taken of a function f(data_input,get_layer_params())
which is defined thusly:
- Recalling that computed_output is a function of both the input to
forward_inplace() and get_layer_params(), since it is the result of
calling forward_inplace(data_input,computed_output):
let f(data_input,get_layer_params()) == dot(computed_output, gradient_input)
Then we define the following gradient vectors:
- PARAMETER_GRADIENT == gradient of f(data_input,get_layer_params()) with
respect to get_layer_params().
- DATA_GRADIENT == gradient of f(data_input,get_layer_params()) with respect
to data_input.
Finally, backward_inplace() outputs these gradients by performing:
- params_grad = PARAMETER_GRADIENT
- data_grad = DATA_GRADIENT
!*/
const
tensor
&
get_layer_params
(
)
const
;
/*!
...
...
@@ -277,7 +346,7 @@ namespace dlib
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
);
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
computed_output
,
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
const
tensor
&
get_layer_params
()
const
;
tensor
&
get_layer_params
();
/*!
...
...
@@ -313,8 +382,8 @@ namespace dlib
);
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
);
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_
tensor
&
output
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
computed_output
,
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
void
forward_inplace
(
const
tensor
&
input
,
tensor
&
output
);
void
backward
_inplace
(
const
tensor
&
computed_output
,
const
tensor
&
gradient_input
,
tensor
&
data_grad
,
tensor
&
params_grad
);
const
tensor
&
get_layer_params
()
const
;
tensor
&
get_layer_params
();
/*!
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment