Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
91234133
Commit
91234133
authored
Oct 25, 2015
by
Davis King
Browse files
Added cuDNN activation functions
parent
45b2c06a
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
123 additions
and
12 deletions
+123
-12
dlib/dnn/cudnn_dlibapi.cpp
dlib/dnn/cudnn_dlibapi.cpp
+108
-0
dlib/dnn/cudnn_dlibapi.h
dlib/dnn/cudnn_dlibapi.h
+15
-12
No files found.
dlib/dnn/cudnn_dlibapi.cpp
View file @
91234133
...
...
@@ -558,14 +558,50 @@ namespace dlib
const
tensor
&
src
)
{
dest
.
copy_size
(
src
);
if
(
src
.
size
()
==
0
)
return
;
const
float
alpha
=
1
;
const
float
beta
=
0
;
check
(
cudnnActivationForward
(
context
(),
CUDNN_ACTIVATION_SIGMOID
,
&
alpha
,
descriptor
(
src
),
src
.
device
(),
&
beta
,
descriptor
(
dest
),
dest
.
device
()));
}
void
sigmoid_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
gradient_input
)
{
DLIB_CASSERT
(
have_same_dimensions
(
src
,
gradient_input
)
==
true
&&
have_same_dimensions
(
src
,
grad
)
==
true
&&
have_same_dimensions
(
src
,
dest
)
==
true
,
""
);
if
(
src
.
size
()
==
0
)
return
;
const
float
alpha
=
1
;
const
float
beta
=
1
;
check
(
cudnnActivationBackward
(
context
(),
CUDNN_ACTIVATION_SIGMOID
,
&
alpha
,
descriptor
(
dest
),
dest
.
device
(),
descriptor
(
gradient_input
),
gradient_input
.
device
(),
descriptor
(
src
),
src
.
device
(),
&
beta
,
descriptor
(
grad
),
grad
.
device
()));
}
// ------------------------------------------------------------------------------------
...
...
@@ -575,14 +611,50 @@ namespace dlib
const
tensor
&
src
)
{
dest
.
copy_size
(
src
);
if
(
src
.
size
()
==
0
)
return
;
const
float
alpha
=
1
;
const
float
beta
=
0
;
check
(
cudnnActivationForward
(
context
(),
CUDNN_ACTIVATION_RELU
,
&
alpha
,
descriptor
(
src
),
src
.
device
(),
&
beta
,
descriptor
(
dest
),
dest
.
device
()));
}
void
relu_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
gradient_input
)
{
DLIB_CASSERT
(
have_same_dimensions
(
src
,
gradient_input
)
==
true
&&
have_same_dimensions
(
src
,
grad
)
==
true
&&
have_same_dimensions
(
src
,
dest
)
==
true
,
""
);
if
(
src
.
size
()
==
0
)
return
;
const
float
alpha
=
1
;
const
float
beta
=
1
;
check
(
cudnnActivationBackward
(
context
(),
CUDNN_ACTIVATION_RELU
,
&
alpha
,
descriptor
(
dest
),
dest
.
device
(),
descriptor
(
gradient_input
),
gradient_input
.
device
(),
descriptor
(
src
),
src
.
device
(),
&
beta
,
descriptor
(
grad
),
grad
.
device
()));
}
// ------------------------------------------------------------------------------------
...
...
@@ -592,14 +664,50 @@ namespace dlib
const
tensor
&
src
)
{
dest
.
copy_size
(
src
);
if
(
src
.
size
()
==
0
)
return
;
const
float
alpha
=
1
;
const
float
beta
=
0
;
check
(
cudnnActivationForward
(
context
(),
CUDNN_ACTIVATION_TANH
,
&
alpha
,
descriptor
(
src
),
src
.
device
(),
&
beta
,
descriptor
(
dest
),
dest
.
device
()));
}
void
tanh_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
gradient_input
)
{
DLIB_CASSERT
(
have_same_dimensions
(
src
,
gradient_input
)
==
true
&&
have_same_dimensions
(
src
,
grad
)
==
true
&&
have_same_dimensions
(
src
,
dest
)
==
true
,
""
);
if
(
src
.
size
()
==
0
)
return
;
const
float
alpha
=
1
;
const
float
beta
=
1
;
check
(
cudnnActivationBackward
(
context
(),
CUDNN_ACTIVATION_TANH
,
&
alpha
,
descriptor
(
dest
),
dest
.
device
(),
descriptor
(
gradient_input
),
gradient_input
.
device
(),
descriptor
(
src
),
src
.
device
(),
&
beta
,
descriptor
(
grad
),
grad
.
device
()));
}
// ------------------------------------------------------------------------------------
...
...
dlib/dnn/cudnn_dlibapi.h
View file @
91234133
...
...
@@ -309,7 +309,6 @@ namespace dlib
// ------------------------------------------------------------------------------------
// cudnnActivationForward(), CUDNN_ACTIVATION_SIGMOID
void
sigmoid
(
resizable_tensor
&
dest
,
const
tensor
&
src
...
...
@@ -321,9 +320,9 @@ namespace dlib
- #dest.host()[i] == 1/(1+std::exp(-src.host()[i]))
!*/
// cudnnActivationBackward()
void
sigmoid_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
gradient_input
);
...
...
@@ -331,16 +330,17 @@ namespace dlib
requires
- have_same_dimensions(src,gradient_input) == true
- have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true
- dest contains the result of calling sigmoid(dest,src)
ensures
-
let OUT be
the output of sigmoid(
OUT
,src)
-
let f(src) == dot(gradient_input,
OUT
)
-
Recalling that dest is
the output of sigmoid(
dest
,src)
,
let f(src) == dot(gradient_input,
dist
)
- Then this function computes the gradient of f() with respect to src and
adds it to grad.
!*/
// ------------------------------------------------------------------------------------
// cudnnActivationForward(), CUDNN_ACTIVATION_RELU
void
relu
(
resizable_tensor
&
dest
,
const
tensor
&
src
...
...
@@ -352,9 +352,9 @@ namespace dlib
- #dest.host()[i] == std::max(0,src.host()[i])
!*/
// cudnnActivationBackward()
void
relu_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
gradient_input
);
...
...
@@ -362,16 +362,17 @@ namespace dlib
requires
- have_same_dimensions(src,gradient_input) == true
- have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true
- dest contains the result of calling relu(dest,src)
ensures
-
let OUT be
the output of relu(
OUT
,src)
-
let f(src) == dot(gradient_input,
OUT
)
-
Recalling that dest is
the output of relu(
dest
,src)
,
let f(src) == dot(gradient_input,
dist
)
- Then this function computes the gradient of f() with respect to src and
adds it to grad.
!*/
// ------------------------------------------------------------------------------------
// cudnnActivationForward(), CUDNN_ACTIVATION_TANH
void
tanh
(
resizable_tensor
&
dest
,
const
tensor
&
src
...
...
@@ -383,9 +384,9 @@ namespace dlib
- #dest.host()[i] == std::tanh(src.host()[i])
!*/
// cudnnActivationBackward()
void
tanh_gradient
(
tensor
&
grad
,
const
tensor
&
dest
,
const
tensor
&
src
,
const
tensor
&
gradient_input
);
...
...
@@ -393,9 +394,11 @@ namespace dlib
requires
- have_same_dimensions(src,gradient_input) == true
- have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true
- dest contains the result of calling tanh(dest,src)
ensures
-
let OUT be
the output of tanh(
OUT
,src)
-
let f(src) == dot(gradient_input,
OUT
)
-
Recalling that dest is
the output of tanh(
dest
,src)
,
let f(src) == dot(gradient_input,
dist
)
- Then this function computes the gradient of f() with respect to src and
adds it to grad.
!*/
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment