Commit 7cd5f664 authored by Davis King's avatar Davis King
Browse files

Added a copy of libjpeg so that it can be statically compiled in when

cmake can't find a copy to dynamically link to.  This is especially
useful on windows where cmake never finds libjpeg.
parent 481c85b2
/*
* jdsample.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains upsampling routines.
*
* Upsampling input data is counted in "row groups". A row group
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
* sample rows of each component. Upsampling will normally produce
* max_v_samp_factor pixel rows from each row group (but this could vary
* if the upsampler is applying a scale factor of its own).
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/* Pointer to routine to upsample a single component */
typedef JMETHOD(void, upsample1_ptr,
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
/* Private subobject */
typedef struct {
struct jpeg_upsampler pub; /* public fields */
/* Color conversion buffer. When using separate upsampling and color
* conversion steps, this buffer holds one upsampled row group until it
* has been color converted and output.
* Note: we do not allocate any storage for component(s) which are full-size,
* ie do not need rescaling. The corresponding entry of color_buf[] is
* simply set to point to the input data array, thereby avoiding copying.
*/
JSAMPARRAY color_buf[MAX_COMPONENTS];
/* Per-component upsampling method pointers */
upsample1_ptr methods[MAX_COMPONENTS];
int next_row_out; /* counts rows emitted from color_buf */
JDIMENSION rows_to_go; /* counts rows remaining in image */
/* Height of an input row group for each component. */
int rowgroup_height[MAX_COMPONENTS];
/* These arrays save pixel expansion factors so that int_expand need not
* recompute them each time. They are unused for other upsampling methods.
*/
UINT8 h_expand[MAX_COMPONENTS];
UINT8 v_expand[MAX_COMPONENTS];
} my_upsampler;
typedef my_upsampler * my_upsample_ptr;
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_upsample (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
/* Mark the conversion buffer empty */
upsample->next_row_out = cinfo->max_v_samp_factor;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* In this version we upsample each component independently.
* We upsample one row group into the conversion buffer, then apply
* color conversion a row at a time.
*/
METHODDEF(void)
sep_upsample (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
int ci;
jpeg_component_info * compptr;
JDIMENSION num_rows;
/* Fill the conversion buffer, if it's empty */
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Invoke per-component upsample method. Notice we pass a POINTER
* to color_buf[ci], so that fullsize_upsample can change it.
*/
(*upsample->methods[ci]) (cinfo, compptr,
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
upsample->color_buf + ci);
}
upsample->next_row_out = 0;
}
/* Color-convert and emit rows */
/* How many we have in the buffer: */
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
/* Not more than the distance to the end of the image. Need this test
* in case the image height is not a multiple of max_v_samp_factor:
*/
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
(JDIMENSION) upsample->next_row_out,
output_buf + *out_row_ctr,
(int) num_rows);
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
upsample->next_row_out += num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by sep_upsample to upsample pixel values
* of a single component. One row group is processed per call.
*/
/*
* For full-size components, we just make color_buf[ci] point at the
* input buffer, and thus avoid copying any data. Note that this is
* safe only because sep_upsample doesn't declare the input row group
* "consumed" until we are done color converting and emitting it.
*/
METHODDEF(void)
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
*output_data_ptr = input_data;
}
/*
* This is a no-op version used for "uninteresting" components.
* These components will not be referenced by color conversion.
*/
METHODDEF(void)
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
*output_data_ptr = NULL; /* safety check */
}
/*
* This version handles any integral sampling ratios.
* This is not used for typical JPEG files, so it need not be fast.
* Nor, for that matter, is it particularly accurate: the algorithm is
* simple replication of the input pixel onto the corresponding output
* pixels. The hi-falutin sampling literature refers to this as a
* "box filter". A box filter tends to introduce visible artifacts,
* so if you are actually going to use 3:1 or 4:1 sampling ratios
* you would be well advised to improve this code.
*/
METHODDEF(void)
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
JSAMPARRAY output_data = *output_data_ptr;
register JSAMPROW inptr, outptr;
register JSAMPLE invalue;
register int h;
JSAMPROW outend;
int h_expand, v_expand;
int inrow, outrow;
h_expand = upsample->h_expand[compptr->component_index];
v_expand = upsample->v_expand[compptr->component_index];
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
/* Generate one output row with proper horizontal expansion */
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
for (h = h_expand; h > 0; h--) {
*outptr++ = invalue;
}
}
/* Generate any additional output rows by duplicating the first one */
if (v_expand > 1) {
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
v_expand-1, cinfo->output_width);
}
inrow++;
outrow += v_expand;
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
register JSAMPROW inptr, outptr;
register JSAMPLE invalue;
JSAMPROW outend;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
register JSAMPROW inptr, outptr;
register JSAMPLE invalue;
JSAMPROW outend;
int inrow, outrow;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++; /* don't need GETJSAMPLE() here */
*outptr++ = invalue;
*outptr++ = invalue;
}
jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
1, cinfo->output_width);
inrow++;
outrow += 2;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
*
* The upsampling algorithm is linear interpolation between pixel centers,
* also known as a "triangle filter". This is a good compromise between
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
* of the way between input pixel centers.
*
* A note about the "bias" calculations: when rounding fractional values to
* integer, we do not want to always round 0.5 up to the next integer.
* If we did that, we'd introduce a noticeable bias towards larger values.
* Instead, this code is arranged so that 0.5 will be rounded up or down at
* alternate pixel locations (a simple ordered dither pattern).
*/
METHODDEF(void)
h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
register JSAMPROW inptr, outptr;
register int invalue;
register JDIMENSION colctr;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
/* Special case for first column */
invalue = GETJSAMPLE(*inptr++);
*outptr++ = (JSAMPLE) invalue;
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
invalue = GETJSAMPLE(*inptr++) * 3;
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
*outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
}
/* Special case for last column */
invalue = GETJSAMPLE(*inptr);
*outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
*outptr++ = (JSAMPLE) invalue;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
* Again a triangle filter; see comments for h2v1 case, above.
*
* It is OK for us to reference the adjacent input rows because we demanded
* context from the main buffer controller (see initialization code).
*/
METHODDEF(void)
h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
register JSAMPROW inptr0, inptr1, outptr;
#if BITS_IN_JSAMPLE == 8
register int thiscolsum, lastcolsum, nextcolsum;
#else
register INT32 thiscolsum, lastcolsum, nextcolsum;
#endif
register JDIMENSION colctr;
int inrow, outrow, v;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
for (v = 0; v < 2; v++) {
/* inptr0 points to nearest input row, inptr1 points to next nearest */
inptr0 = input_data[inrow];
if (v == 0) /* next nearest is row above */
inptr1 = input_data[inrow-1];
else /* next nearest is row below */
inptr1 = input_data[inrow+1];
outptr = output_data[outrow++];
/* Special case for first column */
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
}
/* Special case for last column */
*outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
}
inrow++;
}
}
/*
* Module initialization routine for upsampling.
*/
GLOBAL(void)
jinit_upsampler (j_decompress_ptr cinfo)
{
my_upsample_ptr upsample;
int ci;
jpeg_component_info * compptr;
boolean need_buffer, do_fancy;
int h_in_group, v_in_group, h_out_group, v_out_group;
upsample = (my_upsample_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_upsampler));
cinfo->upsample = (struct jpeg_upsampler *) upsample;
upsample->pub.start_pass = start_pass_upsample;
upsample->pub.upsample = sep_upsample;
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
if (cinfo->CCIR601_sampling) /* this isn't supported */
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
* so don't ask for it.
*/
do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
/* Verify we can handle the sampling factors, select per-component methods,
* and create storage as needed.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Compute size of an "input group" after IDCT scaling. This many samples
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
*/
h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
cinfo->min_DCT_scaled_size;
v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
cinfo->min_DCT_scaled_size;
h_out_group = cinfo->max_h_samp_factor;
v_out_group = cinfo->max_v_samp_factor;
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
need_buffer = TRUE;
if (! compptr->component_needed) {
/* Don't bother to upsample an uninteresting component. */
upsample->methods[ci] = noop_upsample;
need_buffer = FALSE;
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
/* Fullsize components can be processed without any work. */
upsample->methods[ci] = fullsize_upsample;
need_buffer = FALSE;
} else if (h_in_group * 2 == h_out_group &&
v_in_group == v_out_group) {
/* Special cases for 2h1v upsampling */
if (do_fancy && compptr->downsampled_width > 2)
upsample->methods[ci] = h2v1_fancy_upsample;
else
upsample->methods[ci] = h2v1_upsample;
} else if (h_in_group * 2 == h_out_group &&
v_in_group * 2 == v_out_group) {
/* Special cases for 2h2v upsampling */
if (do_fancy && compptr->downsampled_width > 2) {
upsample->methods[ci] = h2v2_fancy_upsample;
upsample->pub.need_context_rows = TRUE;
} else
upsample->methods[ci] = h2v2_upsample;
} else if ((h_out_group % h_in_group) == 0 &&
(v_out_group % v_in_group) == 0) {
/* Generic integral-factors upsampling method */
upsample->methods[ci] = int_upsample;
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
} else
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
if (need_buffer) {
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) jround_up((long) cinfo->output_width,
(long) cinfo->max_h_samp_factor),
(JDIMENSION) cinfo->max_v_samp_factor);
}
}
}
/*
* jerror.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains simple error-reporting and trace-message routines.
* These are suitable for Unix-like systems and others where writing to
* stderr is the right thing to do. Many applications will want to replace
* some or all of these routines.
*
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile,
* you get a Windows-specific hack to display error messages in a dialog box.
* It ain't much, but it beats dropping error messages into the bit bucket,
* which is what happens to output to stderr under most Windows C compilers.
*
* These routines are used by both the compression and decompression code.
*/
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
#include "jinclude.h"
#include "jpeglib.h"
#include "jversion.h"
#include "jerror.h"
#ifdef USE_WINDOWS_MESSAGEBOX
#include <windows.h>
#endif
#ifndef EXIT_FAILURE /* define exit() codes if not provided */
#define EXIT_FAILURE 1
#endif
/*
* Create the message string table.
* We do this from the master message list in jerror.h by re-reading
* jerror.h with a suitable definition for macro JMESSAGE.
* The message table is made an external symbol just in case any applications
* want to refer to it directly.
*/
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_std_message_table jMsgTable
#endif
#define JMESSAGE(code,string) string ,
const char * const jpeg_std_message_table[] = {
#include "jerror.h"
NULL
};
/*
* Error exit handler: must not return to caller.
*
* Applications may override this if they want to get control back after
* an error. Typically one would longjmp somewhere instead of exiting.
* The setjmp buffer can be made a private field within an expanded error
* handler object. Note that the info needed to generate an error message
* is stored in the error object, so you can generate the message now or
* later, at your convenience.
* You should make sure that the JPEG object is cleaned up (with jpeg_abort
* or jpeg_destroy) at some point.
*/
METHODDEF(void)
error_exit (j_common_ptr cinfo)
{
/* Always display the message */
(*cinfo->err->output_message) (cinfo);
/* Let the memory manager delete any temp files before we die */
jpeg_destroy(cinfo);
exit(EXIT_FAILURE);
}
/*
* Actual output of an error or trace message.
* Applications may override this method to send JPEG messages somewhere
* other than stderr.
*
* On Windows, printing to stderr is generally completely useless,
* so we provide optional code to produce an error-dialog popup.
* Most Windows applications will still prefer to override this routine,
* but if they don't, it'll do something at least marginally useful.
*
* NOTE: to use the library in an environment that doesn't support the
* C stdio library, you may have to delete the call to fprintf() entirely,
* not just not use this routine.
*/
METHODDEF(void)
output_message (j_common_ptr cinfo)
{
char buffer[JMSG_LENGTH_MAX];
/* Create the message */
(*cinfo->err->format_message) (cinfo, buffer);
#ifdef USE_WINDOWS_MESSAGEBOX
/* Display it in a message dialog box */
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error",
MB_OK | MB_ICONERROR);
#else
/* Send it to stderr, adding a newline */
fprintf(stderr, "%s\n", buffer);
#endif
}
/*
* Decide whether to emit a trace or warning message.
* msg_level is one of:
* -1: recoverable corrupt-data warning, may want to abort.
* 0: important advisory messages (always display to user).
* 1: first level of tracing detail.
* 2,3,...: successively more detailed tracing messages.
* An application might override this method if it wanted to abort on warnings
* or change the policy about which messages to display.
*/
METHODDEF(void)
emit_message (j_common_ptr cinfo, int msg_level)
{
struct jpeg_error_mgr * err = cinfo->err;
if (msg_level < 0) {
/* It's a warning message. Since corrupt files may generate many warnings,
* the policy implemented here is to show only the first warning,
* unless trace_level >= 3.
*/
if (err->num_warnings == 0 || err->trace_level >= 3)
(*err->output_message) (cinfo);
/* Always count warnings in num_warnings. */
err->num_warnings++;
} else {
/* It's a trace message. Show it if trace_level >= msg_level. */
if (err->trace_level >= msg_level)
(*err->output_message) (cinfo);
}
}
/*
* Format a message string for the most recent JPEG error or message.
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
* characters. Note that no '\n' character is added to the string.
* Few applications should need to override this method.
*/
METHODDEF(void)
format_message (j_common_ptr cinfo, char * buffer)
{
struct jpeg_error_mgr * err = cinfo->err;
int msg_code = err->msg_code;
const char * msgtext = NULL;
const char * msgptr;
char ch;
boolean isstring;
/* Look up message string in proper table */
if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
msgtext = err->jpeg_message_table[msg_code];
} else if (err->addon_message_table != NULL &&
msg_code >= err->first_addon_message &&
msg_code <= err->last_addon_message) {
msgtext = err->addon_message_table[msg_code - err->first_addon_message];
}
/* Defend against bogus message number */
if (msgtext == NULL) {
err->msg_parm.i[0] = msg_code;
msgtext = err->jpeg_message_table[0];
}
/* Check for string parameter, as indicated by %s in the message text */
isstring = FALSE;
msgptr = msgtext;
while ((ch = *msgptr++) != '\0') {
if (ch == '%') {
if (*msgptr == 's') isstring = TRUE;
break;
}
}
/* Format the message into the passed buffer */
if (isstring)
sprintf(buffer, msgtext, err->msg_parm.s);
else
sprintf(buffer, msgtext,
err->msg_parm.i[0], err->msg_parm.i[1],
err->msg_parm.i[2], err->msg_parm.i[3],
err->msg_parm.i[4], err->msg_parm.i[5],
err->msg_parm.i[6], err->msg_parm.i[7]);
}
/*
* Reset error state variables at start of a new image.
* This is called during compression startup to reset trace/error
* processing to default state, without losing any application-specific
* method pointers. An application might possibly want to override
* this method if it has additional error processing state.
*/
METHODDEF(void)
reset_error_mgr (j_common_ptr cinfo)
{
cinfo->err->num_warnings = 0;
/* trace_level is not reset since it is an application-supplied parameter */
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
}
/*
* Fill in the standard error-handling methods in a jpeg_error_mgr object.
* Typical call is:
* struct jpeg_compress_struct cinfo;
* struct jpeg_error_mgr err;
*
* cinfo.err = jpeg_std_error(&err);
* after which the application may override some of the methods.
*/
GLOBAL(struct jpeg_error_mgr *)
jpeg_std_error (struct jpeg_error_mgr * err)
{
err->error_exit = error_exit;
err->emit_message = emit_message;
err->output_message = output_message;
err->format_message = format_message;
err->reset_error_mgr = reset_error_mgr;
err->trace_level = 0; /* default = no tracing */
err->num_warnings = 0; /* no warnings emitted yet */
err->msg_code = 0; /* may be useful as a flag for "no error" */
/* Initialize message table pointers */
err->jpeg_message_table = jpeg_std_message_table;
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
err->addon_message_table = NULL;
err->first_addon_message = 0; /* for safety */
err->last_addon_message = 0;
return err;
}
/*
* jerror.h
*
* Copyright (C) 1994-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file defines the error and message codes for the JPEG library.
* Edit this file to add new codes, or to translate the message strings to
* some other language.
* A set of error-reporting macros are defined too. Some applications using
* the JPEG library may wish to include this file to get the error codes
* and/or the macros.
*/
/*
* To define the enum list of message codes, include this file without
* defining macro JMESSAGE. To create a message string table, include it
* again with a suitable JMESSAGE definition (see jerror.c for an example).
*/
#ifndef JMESSAGE
#ifndef JERROR_H
/* First time through, define the enum list */
#define JMAKE_ENUM_LIST
#else
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
#define JMESSAGE(code,string)
#endif /* JERROR_H */
#endif /* JMESSAGE */
#ifdef JMAKE_ENUM_LIST
typedef enum {
#define JMESSAGE(code,string) code ,
#endif /* JMAKE_ENUM_LIST */
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
/* For maintenance convenience, list is alphabetical by message code name */
JMESSAGE(JERR_ARITH_NOTIMPL,
"Sorry, there are legal restrictions on arithmetic coding")
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range")
JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition")
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
JMESSAGE(JERR_BAD_LIB_VERSION,
"Wrong JPEG library version: library is %d, caller expects %d")
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
JMESSAGE(JERR_BAD_PROGRESSION,
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
JMESSAGE(JERR_BAD_PROG_SCRIPT,
"Invalid progressive parameters at scan script entry %d")
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
JMESSAGE(JERR_BAD_STRUCT_SIZE,
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u")
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
JMESSAGE(JERR_FILE_READ, "Input file read error")
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
"Cannot transcode due to multiple use of quantization table %d")
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
JMESSAGE(JERR_QUANT_COMPONENTS,
"Cannot quantize more than %d color components")
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
JMESSAGE(JERR_TFILE_WRITE,
"Write failed on temporary file --- out of disk space?")
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
JMESSAGE(JMSG_VERSION, JVERSION)
JMESSAGE(JTRC_16BIT_TABLES,
"Caution: quantization tables are too coarse for baseline JPEG")
JMESSAGE(JTRC_ADOBE,
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
JMESSAGE(JTRC_EOI, "End Of Image")
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d")
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
"Warning: thumbnail image size does not match data length %u")
JMESSAGE(JTRC_JFIF_EXTENSION,
"JFIF extension marker: type 0x%02x, length %u")
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u")
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
JMESSAGE(JTRC_RST, "RST%d")
JMESSAGE(JTRC_SMOOTH_NOTIMPL,
"Smoothing not supported with nonstandard sampling ratios")
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
JMESSAGE(JTRC_SOI, "Start of Image")
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
JMESSAGE(JTRC_THUMB_JPEG,
"JFIF extension marker: JPEG-compressed thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_PALETTE,
"JFIF extension marker: palette thumbnail image, length %u")
JMESSAGE(JTRC_THUMB_RGB,
"JFIF extension marker: RGB thumbnail image, length %u")
JMESSAGE(JTRC_UNKNOWN_IDS,
"Unrecognized component IDs %d %d %d, assuming YCbCr")
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
JMESSAGE(JWRN_BOGUS_PROGRESSION,
"Inconsistent progression sequence for component %d coefficient %d")
JMESSAGE(JWRN_EXTRANEOUS_DATA,
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
JMESSAGE(JWRN_MUST_RESYNC,
"Corrupt JPEG data: found marker 0x%02x instead of RST%d")
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
#ifdef JMAKE_ENUM_LIST
JMSG_LASTMSGCODE
} J_MESSAGE_CODE;
#undef JMAKE_ENUM_LIST
#endif /* JMAKE_ENUM_LIST */
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
#undef JMESSAGE
#ifndef JERROR_H
#define JERROR_H
/* Macros to simplify using the error and trace message stuff */
/* The first parameter is either type of cinfo pointer */
/* Fatal errors (print message and exit) */
#define ERREXIT(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT3(cinfo,code,p1,p2,p3) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(cinfo)->err->msg_parm.i[2] = (p3), \
(cinfo)->err->msg_parm.i[3] = (p4), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define ERREXITS(cinfo,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
#define MAKESTMT(stuff) do { stuff } while (0)
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
#define WARNMS(cinfo,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS1(cinfo,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
#define WARNMS2(cinfo,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
/* Informational/debugging messages */
#define TRACEMS(cinfo,lvl,code) \
((cinfo)->err->msg_code = (code), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS1(cinfo,lvl,code,p1) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS2(cinfo,lvl,code,p1,p2) \
((cinfo)->err->msg_code = (code), \
(cinfo)->err->msg_parm.i[0] = (p1), \
(cinfo)->err->msg_parm.i[1] = (p2), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
(cinfo)->err->msg_code = (code); \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
#define TRACEMSS(cinfo,lvl,code,str) \
((cinfo)->err->msg_code = (code), \
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
#endif /* JERROR_H */
/*
* jidctflt.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a floating-point implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* This implementation should be more accurate than either of the integer
* IDCT implementations. However, it may not give the same results on all
* machines because of differences in roundoff behavior. Speed will depend
* on the hardware's floating point capacity.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with a fixed-point
* implementation, accuracy is lost due to imprecise representation of the
* scaled quantization values. However, that problem does not arise if
* we use floating point arithmetic.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_FLOAT_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a float result.
*/
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
FAST_FLOAT z5, z10, z11, z12, z13;
JCOEFPTR inptr;
FLOAT_MULT_TYPE * quantptr;
FAST_FLOAT * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = tmp0 + tmp7;
wsptr[DCTSIZE*7] = tmp0 - tmp7;
wsptr[DCTSIZE*1] = tmp1 + tmp6;
wsptr[DCTSIZE*6] = tmp1 - tmp6;
wsptr[DCTSIZE*2] = tmp2 + tmp5;
wsptr[DCTSIZE*5] = tmp2 - tmp5;
wsptr[DCTSIZE*4] = tmp3 + tmp4;
wsptr[DCTSIZE*3] = tmp3 - tmp4;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* And testing floats for zero is relatively expensive, so we don't bother.
*/
/* Even part */
tmp10 = wsptr[0] + wsptr[4];
tmp11 = wsptr[0] - wsptr[4];
tmp13 = wsptr[2] + wsptr[6];
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = wsptr[5] + wsptr[3];
z10 = wsptr[5] - wsptr[3];
z11 = wsptr[1] + wsptr[7];
z12 = wsptr[1] - wsptr[7];
tmp7 = z11 + z13;
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7;
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
& RANGE_MASK];
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
& RANGE_MASK];
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
& RANGE_MASK];
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
& RANGE_MASK];
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_FLOAT_SUPPORTED */
/*
* jidctfst.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a fast, not so accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
* JPEG textbook (see REFERENCES section in file README). The following code
* is based directly on figure 4-8 in P&M.
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
* possible to arrange the computation so that many of the multiplies are
* simple scalings of the final outputs. These multiplies can then be
* folded into the multiplications or divisions by the JPEG quantization
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
* to be done in the DCT itself.
* The primary disadvantage of this method is that with fixed-point math,
* accuracy is lost due to imprecise representation of the scaled
* quantization values. The smaller the quantization table entry, the less
* precise the scaled value, so this implementation does worse with high-
* quality-setting files than with low-quality ones.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_IFAST_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling decisions are generally the same as in the LL&M algorithm;
* see jidctint.c for more details. However, we choose to descale
* (right shift) multiplication products as soon as they are formed,
* rather than carrying additional fractional bits into subsequent additions.
* This compromises accuracy slightly, but it lets us save a few shifts.
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
* everywhere except in the multiplications proper; this saves a good deal
* of work on 16-bit-int machines.
*
* The dequantized coefficients are not integers because the AA&N scaling
* factors have been incorporated. We represent them scaled up by PASS1_BITS,
* so that the first and second IDCT rounds have the same input scaling.
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
* avoid a descaling shift; this compromises accuracy rather drastically
* for small quantization table entries, but it saves a lot of shifts.
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
* so we use a much larger scaling factor to preserve accuracy.
*
* A final compromise is to represent the multiplicative constants to only
* 8 fractional bits, rather than 13. This saves some shifting work on some
* machines, and may also reduce the cost of multiplication (since there
* are fewer one-bits in the constants).
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 8
#define PASS1_BITS 2
#else
#define CONST_BITS 8
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 8
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */
#else
#define FIX_1_082392200 FIX(1.082392200)
#define FIX_1_414213562 FIX(1.414213562)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_613125930 FIX(2.613125930)
#endif
/* We can gain a little more speed, with a further compromise in accuracy,
* by omitting the addition in a descaling shift. This yields an incorrectly
* rounded result half the time...
*/
#ifndef USE_ACCURATE_ROUNDING
#undef DESCALE
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
#endif
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
* descale to yield a DCTELEM result.
*/
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16
* multiplication will do. For 12-bit data, the multiplier table is
* declared INT32, so a 32-bit multiply will be used.
*/
#if BITS_IN_JSAMPLE == 8
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))
#else
#define DEQUANTIZE(coef,quantval) \
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
#endif
/* Like DESCALE, but applies to a DCTELEM and produces an int.
* We assume that int right shift is unsigned if INT32 right shift is.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define ISHIFT_TEMPS DCTELEM ishift_temp;
#if BITS_IN_JSAMPLE == 8
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */
#else
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */
#endif
#define IRIGHT_SHIFT(x,shft) \
((ishift_temp = (x)) < 0 ? \
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
(ishift_temp >> (shft)))
#else
#define ISHIFT_TEMPS
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
#ifdef USE_ACCURATE_ROUNDING
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
#else
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))
#endif
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
DCTELEM tmp10, tmp11, tmp12, tmp13;
DCTELEM z5, z10, z11, z12, z13;
JCOEFPTR inptr;
IFAST_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS /* for DESCALE */
ISHIFT_TEMPS /* for IDESCALE */
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp10 = tmp0 + tmp2; /* phase 3 */
tmp11 = tmp0 - tmp2;
tmp13 = tmp1 + tmp3; /* phases 5-3 */
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
tmp0 = tmp10 + tmp13; /* phase 2 */
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z13 = tmp6 + tmp5; /* phase 6 */
z10 = tmp6 - tmp5;
z11 = tmp4 + tmp7;
z12 = tmp4 - tmp7;
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
- tmp13;
tmp0 = tmp10 + tmp13;
tmp3 = tmp10 - tmp13;
tmp1 = tmp11 + tmp12;
tmp2 = tmp11 - tmp12;
/* Odd part */
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
tmp7 = z11 + z13; /* phase 5 */
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
tmp6 = tmp12 - tmp7; /* phase 2 */
tmp5 = tmp11 - tmp6;
tmp4 = tmp10 + tmp5;
/* Final output stage: scale down by a factor of 8 and range-limit */
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_IFAST_SUPPORTED */
/*
* jidctint.c
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
* must also perform dequantization of the input coefficients.
*
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
* on each row (or vice versa, but it's more convenient to emit a row at
* a time). Direct algorithms are also available, but they are much more
* complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
* larger than the true IDCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D IDCT,
* because the y0 and y4 inputs need not be divided by sqrt(N).
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (To scale up 12-bit sample data further, an
* intermediate INT32 array would be needed.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients.
*/
GLOBAL(void)
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1, z2, z3, z4, z5;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; ctr--) {
/* Due to quantization, we will usually find that many of the input
* coefficients are zero, especially the AC terms. We can exploit this
* by short-circuiting the IDCT calculation for any column in which all
* the AC terms are zero. In that case each output is equal to the
* DC coefficient (with scale factor as needed).
* With typical images and quantization tables, half or more of the
* column DCT calculations can be simplified this way.
*/
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
inptr[DCTSIZE*7] == 0) {
/* AC terms all zero */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
wsptr[DCTSIZE*4] = dcval;
wsptr[DCTSIZE*5] = dcval;
wsptr[DCTSIZE*6] = dcval;
wsptr[DCTSIZE*7] = dcval;
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
continue;
}
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
tmp0 = (z2 + z3) << CONST_BITS;
tmp1 = (z2 - z3) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
inptr++; /* advance pointers to next column */
quantptr++;
wsptr++;
}
/* Pass 2: process rows from work array, store into output array. */
/* Note that we must descale the results by a factor of 8 == 2**3, */
/* and also undo the PASS1_BITS scaling. */
wsptr = workspace;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
outptr = output_buf[ctr] + output_col;
/* Rows of zeroes can be exploited in the same way as we did with columns.
* However, the column calculation has created many nonzero AC terms, so
* the simplification applies less often (typically 5% to 10% of the time).
* On machines with very fast multiplication, it's possible that the
* test takes more time than it's worth. In that case this section
* may be commented out.
*/
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
outptr[4] = dcval;
outptr[5] = dcval;
outptr[6] = dcval;
outptr[7] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part: reverse the even part of the forward DCT. */
/* The rotator is sqrt(2)*c(-6). */
z2 = (INT32) wsptr[2];
z3 = (INT32) wsptr[6];
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
tmp10 = tmp0 + tmp3;
tmp13 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp1 - tmp2;
/* Odd part per figure 8; the matrix is unitary and hence its
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
*/
tmp0 = (INT32) wsptr[7];
tmp1 = (INT32) wsptr[5];
tmp2 = (INT32) wsptr[3];
tmp3 = (INT32) wsptr[1];
z1 = tmp0 + tmp3;
z2 = tmp1 + tmp2;
z3 = tmp0 + tmp2;
z4 = tmp1 + tmp3;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
z3 += z5;
z4 += z5;
tmp0 += z1 + z3;
tmp1 += z2 + z4;
tmp2 += z2 + z3;
tmp3 += z1 + z4;
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
CONST_BITS+PASS1_BITS+3)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
#endif /* DCT_ISLOW_SUPPORTED */
/*
* jidctred.c
*
* Copyright (C) 1994-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains inverse-DCT routines that produce reduced-size output:
* either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
*
* The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
* algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
* with an 8-to-4 step that produces the four averages of two adjacent outputs
* (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
* These steps were derived by computing the corresponding values at the end
* of the normal LL&M code, then simplifying as much as possible.
*
* 1x1 is trivial: just take the DC coefficient divided by 8.
*
* See jidctint.c for additional comments.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef IDCT_SCALING_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/* Scaling is the same as in jidctint.c. */
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
#else
#define FIX_0_211164243 FIX(0.211164243)
#define FIX_0_509795579 FIX(0.509795579)
#define FIX_0_601344887 FIX(0.601344887)
#define FIX_0_720959822 FIX(0.720959822)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_850430095 FIX(0.850430095)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_061594337 FIX(1.061594337)
#define FIX_1_272758580 FIX(1.272758580)
#define FIX_1_451774981 FIX(1.451774981)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_2_172734803 FIX(2.172734803)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_624509785 FIX(3.624509785)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/* Dequantize a coefficient by multiplying it by the multiplier-table
* entry; produce an int result. In this module, both inputs and result
* are 16 bits or less, so either int or short multiply will work.
*/
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 4x4 output block.
*/
GLOBAL(void)
jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp2, tmp10, tmp12;
INT32 z1, z2, z3, z4;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE*4]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
/* Don't bother to process column 4, because second pass won't use it */
if (ctr == DCTSIZE-4)
continue;
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
/* AC terms all zero; we need not examine term 4 for 4x4 output */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
wsptr[DCTSIZE*2] = dcval;
wsptr[DCTSIZE*3] = dcval;
continue;
}
/* Even part */
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp0 <<= (CONST_BITS+1);
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
tmp10 = tmp0 + tmp2;
tmp12 = tmp0 - tmp2;
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
/* Final output stage */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
}
/* Pass 2: process 4 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 4; ctr++) {
outptr = output_buf[ctr] + output_col;
/* It's not clear whether a zero row test is worthwhile here ... */
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
outptr[2] = dcval;
outptr[3] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
+ MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
tmp10 = tmp0 + tmp2;
tmp12 = tmp0 - tmp2;
/* Odd part */
z1 = (INT32) wsptr[7];
z2 = (INT32) wsptr[5];
z3 = (INT32) wsptr[3];
z4 = (INT32) wsptr[1];
tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
+ MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
+ MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
+ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
+ MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
+ MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
+ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
/* Final output stage */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
CONST_BITS+PASS1_BITS+3+1)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 2x2 output block.
*/
GLOBAL(void)
jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
INT32 tmp0, tmp10, z1;
JCOEFPTR inptr;
ISLOW_MULT_TYPE * quantptr;
int * wsptr;
JSAMPROW outptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
int ctr;
int workspace[DCTSIZE*2]; /* buffers data between passes */
SHIFT_TEMPS
/* Pass 1: process columns from input, store into work array. */
inptr = coef_block;
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
wsptr = workspace;
for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
/* Don't bother to process columns 2,4,6 */
if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
continue;
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
/* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
wsptr[DCTSIZE*0] = dcval;
wsptr[DCTSIZE*1] = dcval;
continue;
}
/* Even part */
z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
tmp10 = z1 << (CONST_BITS+2);
/* Odd part */
z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
/* Final output stage */
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
}
/* Pass 2: process 2 rows from work array, store into output array. */
wsptr = workspace;
for (ctr = 0; ctr < 2; ctr++) {
outptr = output_buf[ctr] + output_col;
/* It's not clear whether a zero row test is worthwhile here ... */
#ifndef NO_ZERO_ROW_TEST
if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
/* AC terms all zero */
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
& RANGE_MASK];
outptr[0] = dcval;
outptr[1] = dcval;
wsptr += DCTSIZE; /* advance pointer to next row */
continue;
}
#endif
/* Even part */
tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
/* Odd part */
tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
+ MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
+ MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
+ MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
/* Final output stage */
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
CONST_BITS+PASS1_BITS+3+2)
& RANGE_MASK];
outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
CONST_BITS+PASS1_BITS+3+2)
& RANGE_MASK];
wsptr += DCTSIZE; /* advance pointer to next row */
}
}
/*
* Perform dequantization and inverse DCT on one block of coefficients,
* producing a reduced-size 1x1 output block.
*/
GLOBAL(void)
jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
int dcval;
ISLOW_MULT_TYPE * quantptr;
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
SHIFT_TEMPS
/* We hardly need an inverse DCT routine for this: just take the
* average pixel value, which is one-eighth of the DC coefficient.
*/
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
dcval = (int) DESCALE((INT32) dcval, 3);
output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
}
#endif /* IDCT_SCALING_SUPPORTED */
/*
* jinclude.h
*
* Copyright (C) 1991-1994, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file exists to provide a single place to fix any problems with
* including the wrong system include files. (Common problems are taken
* care of by the standard jconfig symbols, but on really weird systems
* you may have to edit this file.)
*
* NOTE: this file is NOT intended to be included by applications using the
* JPEG library. Most applications need only include jpeglib.h.
*/
/* Include auto-config file to find out which system include files we need. */
#include "jconfig.h" /* auto configuration options */
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
/*
* We need the NULL macro and size_t typedef.
* On an ANSI-conforming system it is sufficient to include <stddef.h>.
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
* pull in <sys/types.h> as well.
* Note that the core JPEG library does not require <stdio.h>;
* only the default error handler and data source/destination modules do.
* But we must pull it in because of the references to FILE in jpeglib.h.
* You can remove those references if you want to compile without <stdio.h>.
*/
#ifdef HAVE_STDDEF_H
#include <stddef.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef NEED_SYS_TYPES_H
#include <sys/types.h>
#endif
#include <stdio.h>
/*
* We need memory copying and zeroing functions, plus strncpy().
* ANSI and System V implementations declare these in <string.h>.
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
* Some systems may declare memset and memcpy in <memory.h>.
*
* NOTE: we assume the size parameters to these functions are of type size_t.
* Change the casts in these macros if not!
*/
#ifdef NEED_BSD_STRINGS
#include <strings.h>
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
#else /* not BSD, assume ANSI/SysV string lib */
#include <string.h>
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
#endif
/*
* In ANSI C, and indeed any rational implementation, size_t is also the
* type returned by sizeof(). However, it seems there are some irrational
* implementations out there, in which sizeof() returns an int even though
* size_t is defined as long or unsigned long. To ensure consistent results
* we always use this SIZEOF() macro in place of using sizeof() directly.
*/
#define SIZEOF(object) ((size_t) sizeof(object))
/*
* The modules that use fread() and fwrite() always invoke them through
* these macros. On some systems you may need to twiddle the argument casts.
* CAUTION: argument order is different from underlying functions!
*/
#define JFREAD(file,buf,sizeofbuf) \
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
#define JFWRITE(file,buf,sizeofbuf) \
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
/*
* jmemmgr.c
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the JPEG system-independent memory management
* routines. This code is usable across a wide variety of machines; most
* of the system dependencies have been isolated in a separate file.
* The major functions provided here are:
* * pool-based allocation and freeing of memory;
* * policy decisions about how to divide available memory among the
* virtual arrays;
* * control logic for swapping virtual arrays between main memory and
* backing storage.
* The separate system-dependent file provides the actual backing-storage
* access code, and it contains the policy decision about how much total
* main memory to use.
* This file is system-dependent in the sense that some of its functions
* are unnecessary in some systems. For example, if there is enough virtual
* memory so that backing storage will never be used, much of the virtual
* array control logic could be removed. (Of course, if you have that much
* memory then you shouldn't care about a little bit of unused code...)
*/
#define JPEG_INTERNALS
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef NO_GETENV
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
extern char * getenv JPP((const char * name));
#endif
#endif
/*
* Some important notes:
* The allocation routines provided here must never return NULL.
* They should exit to error_exit if unsuccessful.
*
* It's not a good idea to try to merge the sarray and barray routines,
* even though they are textually almost the same, because samples are
* usually stored as bytes while coefficients are shorts or ints. Thus,
* in machines where byte pointers have a different representation from
* word pointers, the resulting machine code could not be the same.
*/
/*
* Many machines require storage alignment: longs must start on 4-byte
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
* always returns pointers that are multiples of the worst-case alignment
* requirement, and we had better do so too.
* There isn't any really portable way to determine the worst-case alignment
* requirement. This module assumes that the alignment requirement is
* multiples of sizeof(ALIGN_TYPE).
* By default, we define ALIGN_TYPE as double. This is necessary on some
* workstations (where doubles really do need 8-byte alignment) and will work
* fine on nearly everything. If your machine has lesser alignment needs,
* you can save a few bytes by making ALIGN_TYPE smaller.
* The only place I know of where this will NOT work is certain Macintosh
* 680x0 compilers that define double as a 10-byte IEEE extended float.
* Doing 10-byte alignment is counterproductive because longwords won't be
* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
* such a compiler.
*/
#ifndef ALIGN_TYPE /* so can override from jconfig.h */
#define ALIGN_TYPE double
#endif
/*
* We allocate objects from "pools", where each pool is gotten with a single
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object
* overhead within a pool, except for alignment padding. Each pool has a
* header with a link to the next pool of the same class.
* Small and large pool headers are identical except that the latter's
* link pointer must be FAR on 80x86 machines.
* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
* of the alignment requirement of ALIGN_TYPE.
*/
typedef union small_pool_struct * small_pool_ptr;
typedef union small_pool_struct {
struct {
small_pool_ptr next; /* next in list of pools */
size_t bytes_used; /* how many bytes already used within pool */
size_t bytes_left; /* bytes still available in this pool */
} hdr;
ALIGN_TYPE dummy; /* included in union to ensure alignment */
} small_pool_hdr;
typedef union large_pool_struct FAR * large_pool_ptr;
typedef union large_pool_struct {
struct {
large_pool_ptr next; /* next in list of pools */
size_t bytes_used; /* how many bytes already used within pool */
size_t bytes_left; /* bytes still available in this pool */
} hdr;
ALIGN_TYPE dummy; /* included in union to ensure alignment */
} large_pool_hdr;
/*
* Here is the full definition of a memory manager object.
*/
typedef struct {
struct jpeg_memory_mgr pub; /* public fields */
/* Each pool identifier (lifetime class) names a linked list of pools. */
small_pool_ptr small_list[JPOOL_NUMPOOLS];
large_pool_ptr large_list[JPOOL_NUMPOOLS];
/* Since we only have one lifetime class of virtual arrays, only one
* linked list is necessary (for each datatype). Note that the virtual
* array control blocks being linked together are actually stored somewhere
* in the small-pool list.
*/
jvirt_sarray_ptr virt_sarray_list;
jvirt_barray_ptr virt_barray_list;
/* This counts total space obtained from jpeg_get_small/large */
long total_space_allocated;
/* alloc_sarray and alloc_barray set this value for use by virtual
* array routines.
*/
JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
} my_memory_mgr;
typedef my_memory_mgr * my_mem_ptr;
/*
* The control blocks for virtual arrays.
* Note that these blocks are allocated in the "small" pool area.
* System-dependent info for the associated backing store (if any) is hidden
* inside the backing_store_info struct.
*/
struct jvirt_sarray_control {
JSAMPARRAY mem_buffer; /* => the in-memory buffer */
JDIMENSION rows_in_array; /* total virtual array height */
JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
JDIMENSION rows_in_mem; /* height of memory buffer */
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
JDIMENSION cur_start_row; /* first logical row # in the buffer */
JDIMENSION first_undef_row; /* row # of first uninitialized row */
boolean pre_zero; /* pre-zero mode requested? */
boolean dirty; /* do current buffer contents need written? */
boolean b_s_open; /* is backing-store data valid? */
jvirt_sarray_ptr next; /* link to next virtual sarray control block */
backing_store_info b_s_info; /* System-dependent control info */
};
struct jvirt_barray_control {
JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
JDIMENSION rows_in_array; /* total virtual array height */
JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
JDIMENSION rows_in_mem; /* height of memory buffer */
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
JDIMENSION cur_start_row; /* first logical row # in the buffer */
JDIMENSION first_undef_row; /* row # of first uninitialized row */
boolean pre_zero; /* pre-zero mode requested? */
boolean dirty; /* do current buffer contents need written? */
boolean b_s_open; /* is backing-store data valid? */
jvirt_barray_ptr next; /* link to next virtual barray control block */
backing_store_info b_s_info; /* System-dependent control info */
};
#ifdef MEM_STATS /* optional extra stuff for statistics */
LOCAL(void)
print_mem_stats (j_common_ptr cinfo, int pool_id)
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
small_pool_ptr shdr_ptr;
large_pool_ptr lhdr_ptr;
/* Since this is only a debugging stub, we can cheat a little by using
* fprintf directly rather than going through the trace message code.
* This is helpful because message parm array can't handle longs.
*/
fprintf(stderr, "Freeing pool %d, total space = %ld\n",
pool_id, mem->total_space_allocated);
for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
lhdr_ptr = lhdr_ptr->hdr.next) {
fprintf(stderr, " Large chunk used %ld\n",
(long) lhdr_ptr->hdr.bytes_used);
}
for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
shdr_ptr = shdr_ptr->hdr.next) {
fprintf(stderr, " Small chunk used %ld free %ld\n",
(long) shdr_ptr->hdr.bytes_used,
(long) shdr_ptr->hdr.bytes_left);
}
}
#endif /* MEM_STATS */
LOCAL(void)
out_of_memory (j_common_ptr cinfo, int which)
/* Report an out-of-memory error and stop execution */
/* If we compiled MEM_STATS support, report alloc requests before dying */
{
#ifdef MEM_STATS
cinfo->err->trace_level = 2; /* force self_destruct to report stats */
#endif
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
}
/*
* Allocation of "small" objects.
*
* For these, we use pooled storage. When a new pool must be created,
* we try to get enough space for the current request plus a "slop" factor,
* where the slop will be the amount of leftover space in the new pool.
* The speed vs. space tradeoff is largely determined by the slop values.
* A different slop value is provided for each pool class (lifetime),
* and we also distinguish the first pool of a class from later ones.
* NOTE: the values given work fairly well on both 16- and 32-bit-int
* machines, but may be too small if longs are 64 bits or more.
*/
static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
{
1600, /* first PERMANENT pool */
16000 /* first IMAGE pool */
};
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
{
0, /* additional PERMANENT pools */
5000 /* additional IMAGE pools */
};
#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
METHODDEF(void *)
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
/* Allocate a "small" object */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
small_pool_ptr hdr_ptr, prev_hdr_ptr;
char * data_ptr;
size_t odd_bytes, min_request, slop;
/* Check for unsatisfiable request (do now to ensure no overflow below) */
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
if (odd_bytes > 0)
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
/* See if space is available in any existing pool */
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
prev_hdr_ptr = NULL;
hdr_ptr = mem->small_list[pool_id];
while (hdr_ptr != NULL) {
if (hdr_ptr->hdr.bytes_left >= sizeofobject)
break; /* found pool with enough space */
prev_hdr_ptr = hdr_ptr;
hdr_ptr = hdr_ptr->hdr.next;
}
/* Time to make a new pool? */
if (hdr_ptr == NULL) {
/* min_request is what we need now, slop is what will be leftover */
min_request = sizeofobject + SIZEOF(small_pool_hdr);
if (prev_hdr_ptr == NULL) /* first pool in class? */
slop = first_pool_slop[pool_id];
else
slop = extra_pool_slop[pool_id];
/* Don't ask for more than MAX_ALLOC_CHUNK */
if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
/* Try to get space, if fail reduce slop and try again */
for (;;) {
hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
if (hdr_ptr != NULL)
break;
slop /= 2;
if (slop < MIN_SLOP) /* give up when it gets real small */
out_of_memory(cinfo, 2); /* jpeg_get_small failed */
}
mem->total_space_allocated += min_request + slop;
/* Success, initialize the new pool header and add to end of list */
hdr_ptr->hdr.next = NULL;
hdr_ptr->hdr.bytes_used = 0;
hdr_ptr->hdr.bytes_left = sizeofobject + slop;
if (prev_hdr_ptr == NULL) /* first pool in class? */
mem->small_list[pool_id] = hdr_ptr;
else
prev_hdr_ptr->hdr.next = hdr_ptr;
}
/* OK, allocate the object from the current pool */
data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
hdr_ptr->hdr.bytes_used += sizeofobject;
hdr_ptr->hdr.bytes_left -= sizeofobject;
return (void *) data_ptr;
}
/*
* Allocation of "large" objects.
*
* The external semantics of these are the same as "small" objects,
* except that FAR pointers are used on 80x86. However the pool
* management heuristics are quite different. We assume that each
* request is large enough that it may as well be passed directly to
* jpeg_get_large; the pool management just links everything together
* so that we can free it all on demand.
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
* structures. The routines that create these structures (see below)
* deliberately bunch rows together to ensure a large request size.
*/
METHODDEF(void FAR *)
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
/* Allocate a "large" object */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
large_pool_ptr hdr_ptr;
size_t odd_bytes;
/* Check for unsatisfiable request (do now to ensure no overflow below) */
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
if (odd_bytes > 0)
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
/* Always make a new pool */
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
SIZEOF(large_pool_hdr));
if (hdr_ptr == NULL)
out_of_memory(cinfo, 4); /* jpeg_get_large failed */
mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
/* Success, initialize the new pool header and add to list */
hdr_ptr->hdr.next = mem->large_list[pool_id];
/* We maintain space counts in each pool header for statistical purposes,
* even though they are not needed for allocation.
*/
hdr_ptr->hdr.bytes_used = sizeofobject;
hdr_ptr->hdr.bytes_left = 0;
mem->large_list[pool_id] = hdr_ptr;
return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
}
/*
* Creation of 2-D sample arrays.
* The pointers are in near heap, the samples themselves in FAR heap.
*
* To minimize allocation overhead and to allow I/O of large contiguous
* blocks, we allocate the sample rows in groups of as many rows as possible
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
* NB: the virtual array control routines, later in this file, know about
* this chunking of rows. The rowsperchunk value is left in the mem manager
* object so that it can be saved away if this sarray is the workspace for
* a virtual array.
*/
METHODDEF(JSAMPARRAY)
alloc_sarray (j_common_ptr cinfo, int pool_id,
JDIMENSION samplesperrow, JDIMENSION numrows)
/* Allocate a 2-D sample array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
JSAMPARRAY result;
JSAMPROW workspace;
JDIMENSION rowsperchunk, currow, i;
long ltemp;
/* Calculate max # of rows allowed in one allocation chunk */
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
((long) samplesperrow * SIZEOF(JSAMPLE));
if (ltemp <= 0)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
if (ltemp < (long) numrows)
rowsperchunk = (JDIMENSION) ltemp;
else
rowsperchunk = numrows;
mem->last_rowsperchunk = rowsperchunk;
/* Get space for row pointers (small object) */
result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
(size_t) (numrows * SIZEOF(JSAMPROW)));
/* Get the rows themselves (large objects) */
currow = 0;
while (currow < numrows) {
rowsperchunk = MIN(rowsperchunk, numrows - currow);
workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
* SIZEOF(JSAMPLE)));
for (i = rowsperchunk; i > 0; i--) {
result[currow++] = workspace;
workspace += samplesperrow;
}
}
return result;
}
/*
* Creation of 2-D coefficient-block arrays.
* This is essentially the same as the code for sample arrays, above.
*/
METHODDEF(JBLOCKARRAY)
alloc_barray (j_common_ptr cinfo, int pool_id,
JDIMENSION blocksperrow, JDIMENSION numrows)
/* Allocate a 2-D coefficient-block array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
JBLOCKARRAY result;
JBLOCKROW workspace;
JDIMENSION rowsperchunk, currow, i;
long ltemp;
/* Calculate max # of rows allowed in one allocation chunk */
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
((long) blocksperrow * SIZEOF(JBLOCK));
if (ltemp <= 0)
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
if (ltemp < (long) numrows)
rowsperchunk = (JDIMENSION) ltemp;
else
rowsperchunk = numrows;
mem->last_rowsperchunk = rowsperchunk;
/* Get space for row pointers (small object) */
result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
(size_t) (numrows * SIZEOF(JBLOCKROW)));
/* Get the rows themselves (large objects) */
currow = 0;
while (currow < numrows) {
rowsperchunk = MIN(rowsperchunk, numrows - currow);
workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
* SIZEOF(JBLOCK)));
for (i = rowsperchunk; i > 0; i--) {
result[currow++] = workspace;
workspace += blocksperrow;
}
}
return result;
}
/*
* About virtual array management:
*
* The above "normal" array routines are only used to allocate strip buffers
* (as wide as the image, but just a few rows high). Full-image-sized buffers
* are handled as "virtual" arrays. The array is still accessed a strip at a
* time, but the memory manager must save the whole array for repeated
* accesses. The intended implementation is that there is a strip buffer in
* memory (as high as is possible given the desired memory limit), plus a
* backing file that holds the rest of the array.
*
* The request_virt_array routines are told the total size of the image and
* the maximum number of rows that will be accessed at once. The in-memory
* buffer must be at least as large as the maxaccess value.
*
* The request routines create control blocks but not the in-memory buffers.
* That is postponed until realize_virt_arrays is called. At that time the
* total amount of space needed is known (approximately, anyway), so free
* memory can be divided up fairly.
*
* The access_virt_array routines are responsible for making a specific strip
* area accessible (after reading or writing the backing file, if necessary).
* Note that the access routines are told whether the caller intends to modify
* the accessed strip; during a read-only pass this saves having to rewrite
* data to disk. The access routines are also responsible for pre-zeroing
* any newly accessed rows, if pre-zeroing was requested.
*
* In current usage, the access requests are usually for nonoverlapping
* strips; that is, successive access start_row numbers differ by exactly
* num_rows = maxaccess. This means we can get good performance with simple
* buffer dump/reload logic, by making the in-memory buffer be a multiple
* of the access height; then there will never be accesses across bufferload
* boundaries. The code will still work with overlapping access requests,
* but it doesn't handle bufferload overlaps very efficiently.
*/
METHODDEF(jvirt_sarray_ptr)
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
JDIMENSION samplesperrow, JDIMENSION numrows,
JDIMENSION maxaccess)
/* Request a virtual 2-D sample array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
jvirt_sarray_ptr result;
/* Only IMAGE-lifetime virtual arrays are currently supported */
if (pool_id != JPOOL_IMAGE)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
/* get control block */
result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
SIZEOF(struct jvirt_sarray_control));
result->mem_buffer = NULL; /* marks array not yet realized */
result->rows_in_array = numrows;
result->samplesperrow = samplesperrow;
result->maxaccess = maxaccess;
result->pre_zero = pre_zero;
result->b_s_open = FALSE; /* no associated backing-store object */
result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
mem->virt_sarray_list = result;
return result;
}
METHODDEF(jvirt_barray_ptr)
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
JDIMENSION blocksperrow, JDIMENSION numrows,
JDIMENSION maxaccess)
/* Request a virtual 2-D coefficient-block array */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
jvirt_barray_ptr result;
/* Only IMAGE-lifetime virtual arrays are currently supported */
if (pool_id != JPOOL_IMAGE)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
/* get control block */
result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
SIZEOF(struct jvirt_barray_control));
result->mem_buffer = NULL; /* marks array not yet realized */
result->rows_in_array = numrows;
result->blocksperrow = blocksperrow;
result->maxaccess = maxaccess;
result->pre_zero = pre_zero;
result->b_s_open = FALSE; /* no associated backing-store object */
result->next = mem->virt_barray_list; /* add to list of virtual arrays */
mem->virt_barray_list = result;
return result;
}
METHODDEF(void)
realize_virt_arrays (j_common_ptr cinfo)
/* Allocate the in-memory buffers for any unrealized virtual arrays */
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
long space_per_minheight, maximum_space, avail_mem;
long minheights, max_minheights;
jvirt_sarray_ptr sptr;
jvirt_barray_ptr bptr;
/* Compute the minimum space needed (maxaccess rows in each buffer)
* and the maximum space needed (full image height in each buffer).
* These may be of use to the system-dependent jpeg_mem_available routine.
*/
space_per_minheight = 0;
maximum_space = 0;
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->mem_buffer == NULL) { /* if not realized yet */
space_per_minheight += (long) sptr->maxaccess *
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
maximum_space += (long) sptr->rows_in_array *
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
}
}
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->mem_buffer == NULL) { /* if not realized yet */
space_per_minheight += (long) bptr->maxaccess *
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
maximum_space += (long) bptr->rows_in_array *
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
}
}
if (space_per_minheight <= 0)
return; /* no unrealized arrays, no work */
/* Determine amount of memory to actually use; this is system-dependent. */
avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
mem->total_space_allocated);
/* If the maximum space needed is available, make all the buffers full
* height; otherwise parcel it out with the same number of minheights
* in each buffer.
*/
if (avail_mem >= maximum_space)
max_minheights = 1000000000L;
else {
max_minheights = avail_mem / space_per_minheight;
/* If there doesn't seem to be enough space, try to get the minimum
* anyway. This allows a "stub" implementation of jpeg_mem_available().
*/
if (max_minheights <= 0)
max_minheights = 1;
}
/* Allocate the in-memory buffers and initialize backing store as needed. */
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->mem_buffer == NULL) { /* if not realized yet */
minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
if (minheights <= max_minheights) {
/* This buffer fits in memory */
sptr->rows_in_mem = sptr->rows_in_array;
} else {
/* It doesn't fit in memory, create backing store. */
sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
jpeg_open_backing_store(cinfo, & sptr->b_s_info,
(long) sptr->rows_in_array *
(long) sptr->samplesperrow *
(long) SIZEOF(JSAMPLE));
sptr->b_s_open = TRUE;
}
sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
sptr->samplesperrow, sptr->rows_in_mem);
sptr->rowsperchunk = mem->last_rowsperchunk;
sptr->cur_start_row = 0;
sptr->first_undef_row = 0;
sptr->dirty = FALSE;
}
}
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->mem_buffer == NULL) { /* if not realized yet */
minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
if (minheights <= max_minheights) {
/* This buffer fits in memory */
bptr->rows_in_mem = bptr->rows_in_array;
} else {
/* It doesn't fit in memory, create backing store. */
bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
jpeg_open_backing_store(cinfo, & bptr->b_s_info,
(long) bptr->rows_in_array *
(long) bptr->blocksperrow *
(long) SIZEOF(JBLOCK));
bptr->b_s_open = TRUE;
}
bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
bptr->blocksperrow, bptr->rows_in_mem);
bptr->rowsperchunk = mem->last_rowsperchunk;
bptr->cur_start_row = 0;
bptr->first_undef_row = 0;
bptr->dirty = FALSE;
}
}
}
LOCAL(void)
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
/* Do backing store read or write of a virtual sample array */
{
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
file_offset = ptr->cur_start_row * bytesperrow;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
/* One chunk, but check for short chunk at end of buffer */
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
/* Transfer no more than is currently defined */
thisrow = (long) ptr->cur_start_row + i;
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
/* Transfer no more than fits in file */
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
if (rows <= 0) /* this chunk might be past end of file! */
break;
byte_count = rows * bytesperrow;
if (writing)
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
else
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
file_offset += byte_count;
}
}
LOCAL(void)
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
/* Do backing store read or write of a virtual coefficient-block array */
{
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
file_offset = ptr->cur_start_row * bytesperrow;
/* Loop to read or write each allocation chunk in mem_buffer */
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
/* One chunk, but check for short chunk at end of buffer */
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
/* Transfer no more than is currently defined */
thisrow = (long) ptr->cur_start_row + i;
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
/* Transfer no more than fits in file */
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
if (rows <= 0) /* this chunk might be past end of file! */
break;
byte_count = rows * bytesperrow;
if (writing)
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
else
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
(void FAR *) ptr->mem_buffer[i],
file_offset, byte_count);
file_offset += byte_count;
}
}
METHODDEF(JSAMPARRAY)
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
JDIMENSION start_row, JDIMENSION num_rows,
boolean writable)
/* Access the part of a virtual sample array starting at start_row */
/* and extending for num_rows rows. writable is true if */
/* caller intends to modify the accessed area. */
{
JDIMENSION end_row = start_row + num_rows;
JDIMENSION undef_row;
/* debugging check */
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
ptr->mem_buffer == NULL)
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
/* Make the desired part of the virtual array accessible */
if (start_row < ptr->cur_start_row ||
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
if (! ptr->b_s_open)
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
/* Flush old buffer contents if necessary */
if (ptr->dirty) {
do_sarray_io(cinfo, ptr, TRUE);
ptr->dirty = FALSE;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target area is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row > ptr->cur_start_row) {
ptr->cur_start_row = start_row;
} else {
/* use long arithmetic here to avoid overflow & unsigned problems */
long ltemp;
ltemp = (long) end_row - (long) ptr->rows_in_mem;
if (ltemp < 0)
ltemp = 0; /* don't fall off front end of file */
ptr->cur_start_row = (JDIMENSION) ltemp;
}
/* Read in the selected part of the array.
* During the initial write pass, we will do no actual read
* because the selected part is all undefined.
*/
do_sarray_io(cinfo, ptr, FALSE);
}
/* Ensure the accessed part of the array is defined; prezero if needed.
* To improve locality of access, we only prezero the part of the array
* that the caller is about to access, not the entire in-memory array.
*/
if (ptr->first_undef_row < end_row) {
if (ptr->first_undef_row < start_row) {
if (writable) /* writer skipped over a section of array */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
undef_row = start_row; /* but reader is allowed to read ahead */
} else {
undef_row = ptr->first_undef_row;
}
if (writable)
ptr->first_undef_row = end_row;
if (ptr->pre_zero) {
size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
end_row -= ptr->cur_start_row;
while (undef_row < end_row) {
jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
undef_row++;
}
} else {
if (! writable) /* reader looking at undefined data */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable)
ptr->dirty = TRUE;
/* Return address of proper part of the buffer */
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}
METHODDEF(JBLOCKARRAY)
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
JDIMENSION start_row, JDIMENSION num_rows,
boolean writable)
/* Access the part of a virtual block array starting at start_row */
/* and extending for num_rows rows. writable is true if */
/* caller intends to modify the accessed area. */
{
JDIMENSION end_row = start_row + num_rows;
JDIMENSION undef_row;
/* debugging check */
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
ptr->mem_buffer == NULL)
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
/* Make the desired part of the virtual array accessible */
if (start_row < ptr->cur_start_row ||
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
if (! ptr->b_s_open)
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
/* Flush old buffer contents if necessary */
if (ptr->dirty) {
do_barray_io(cinfo, ptr, TRUE);
ptr->dirty = FALSE;
}
/* Decide what part of virtual array to access.
* Algorithm: if target address > current window, assume forward scan,
* load starting at target address. If target address < current window,
* assume backward scan, load so that target area is top of window.
* Note that when switching from forward write to forward read, will have
* start_row = 0, so the limiting case applies and we load from 0 anyway.
*/
if (start_row > ptr->cur_start_row) {
ptr->cur_start_row = start_row;
} else {
/* use long arithmetic here to avoid overflow & unsigned problems */
long ltemp;
ltemp = (long) end_row - (long) ptr->rows_in_mem;
if (ltemp < 0)
ltemp = 0; /* don't fall off front end of file */
ptr->cur_start_row = (JDIMENSION) ltemp;
}
/* Read in the selected part of the array.
* During the initial write pass, we will do no actual read
* because the selected part is all undefined.
*/
do_barray_io(cinfo, ptr, FALSE);
}
/* Ensure the accessed part of the array is defined; prezero if needed.
* To improve locality of access, we only prezero the part of the array
* that the caller is about to access, not the entire in-memory array.
*/
if (ptr->first_undef_row < end_row) {
if (ptr->first_undef_row < start_row) {
if (writable) /* writer skipped over a section of array */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
undef_row = start_row; /* but reader is allowed to read ahead */
} else {
undef_row = ptr->first_undef_row;
}
if (writable)
ptr->first_undef_row = end_row;
if (ptr->pre_zero) {
size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
end_row -= ptr->cur_start_row;
while (undef_row < end_row) {
jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
undef_row++;
}
} else {
if (! writable) /* reader looking at undefined data */
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
}
}
/* Flag the buffer dirty if caller will write in it */
if (writable)
ptr->dirty = TRUE;
/* Return address of proper part of the buffer */
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
}
/*
* Release all objects belonging to a specified pool.
*/
METHODDEF(void)
free_pool (j_common_ptr cinfo, int pool_id)
{
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
small_pool_ptr shdr_ptr;
large_pool_ptr lhdr_ptr;
size_t space_freed;
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
#ifdef MEM_STATS
if (cinfo->err->trace_level > 1)
print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
#endif
/* If freeing IMAGE pool, close any virtual arrays first */
if (pool_id == JPOOL_IMAGE) {
jvirt_sarray_ptr sptr;
jvirt_barray_ptr bptr;
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
if (sptr->b_s_open) { /* there may be no backing store */
sptr->b_s_open = FALSE; /* prevent recursive close if error */
(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
}
}
mem->virt_sarray_list = NULL;
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
if (bptr->b_s_open) { /* there may be no backing store */
bptr->b_s_open = FALSE; /* prevent recursive close if error */
(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
}
}
mem->virt_barray_list = NULL;
}
/* Release large objects */
lhdr_ptr = mem->large_list[pool_id];
mem->large_list[pool_id] = NULL;
while (lhdr_ptr != NULL) {
large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
space_freed = lhdr_ptr->hdr.bytes_used +
lhdr_ptr->hdr.bytes_left +
SIZEOF(large_pool_hdr);
jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
mem->total_space_allocated -= space_freed;
lhdr_ptr = next_lhdr_ptr;
}
/* Release small objects */
shdr_ptr = mem->small_list[pool_id];
mem->small_list[pool_id] = NULL;
while (shdr_ptr != NULL) {
small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
space_freed = shdr_ptr->hdr.bytes_used +
shdr_ptr->hdr.bytes_left +
SIZEOF(small_pool_hdr);
jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
mem->total_space_allocated -= space_freed;
shdr_ptr = next_shdr_ptr;
}
}
/*
* Close up shop entirely.
* Note that this cannot be called unless cinfo->mem is non-NULL.
*/
METHODDEF(void)
self_destruct (j_common_ptr cinfo)
{
int pool;
/* Close all backing store, release all memory.
* Releasing pools in reverse order might help avoid fragmentation
* with some (brain-damaged) malloc libraries.
*/
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
free_pool(cinfo, pool);
}
/* Release the memory manager control block too. */
jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
cinfo->mem = NULL; /* ensures I will be called only once */
jpeg_mem_term(cinfo); /* system-dependent cleanup */
}
/*
* Memory manager initialization.
* When this is called, only the error manager pointer is valid in cinfo!
*/
GLOBAL(void)
jinit_memory_mgr (j_common_ptr cinfo)
{
my_mem_ptr mem;
long max_to_use;
int pool;
size_t test_mac;
cinfo->mem = NULL; /* for safety if init fails */
/* Check for configuration errors.
* SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
* doesn't reflect any real hardware alignment requirement.
* The test is a little tricky: for X>0, X and X-1 have no one-bits
* in common if and only if X is a power of 2, ie has only one one-bit.
* Some compilers may give an "unreachable code" warning here; ignore it.
*/
if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
* a multiple of SIZEOF(ALIGN_TYPE).
* Again, an "unreachable code" warning may be ignored here.
* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
*/
test_mac = (size_t) MAX_ALLOC_CHUNK;
if ((long) test_mac != MAX_ALLOC_CHUNK ||
(MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
/* Attempt to allocate memory manager's control block */
mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
if (mem == NULL) {
jpeg_mem_term(cinfo); /* system-dependent cleanup */
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
}
/* OK, fill in the method pointers */
mem->pub.alloc_small = alloc_small;
mem->pub.alloc_large = alloc_large;
mem->pub.alloc_sarray = alloc_sarray;
mem->pub.alloc_barray = alloc_barray;
mem->pub.request_virt_sarray = request_virt_sarray;
mem->pub.request_virt_barray = request_virt_barray;
mem->pub.realize_virt_arrays = realize_virt_arrays;
mem->pub.access_virt_sarray = access_virt_sarray;
mem->pub.access_virt_barray = access_virt_barray;
mem->pub.free_pool = free_pool;
mem->pub.self_destruct = self_destruct;
/* Make MAX_ALLOC_CHUNK accessible to other modules */
mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
/* Initialize working state */
mem->pub.max_memory_to_use = max_to_use;
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
mem->small_list[pool] = NULL;
mem->large_list[pool] = NULL;
}
mem->virt_sarray_list = NULL;
mem->virt_barray_list = NULL;
mem->total_space_allocated = SIZEOF(my_memory_mgr);
/* Declare ourselves open for business */
cinfo->mem = & mem->pub;
/* Check for an environment variable JPEGMEM; if found, override the
* default max_memory setting from jpeg_mem_init. Note that the
* surrounding application may again override this value.
* If your system doesn't support getenv(), define NO_GETENV to disable
* this feature.
*/
#ifndef NO_GETENV
{ char * memenv;
if ((memenv = getenv("JPEGMEM")) != NULL) {
char ch = 'x';
if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
if (ch == 'm' || ch == 'M')
max_to_use *= 1000L;
mem->pub.max_memory_to_use = max_to_use * 1000L;
}
}
}
#endif
}
/*
* jmemnobs.c
*
* Copyright (C) 1992-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file provides a really simple implementation of the system-
* dependent portion of the JPEG memory manager. This implementation
* assumes that no backing-store files are needed: all required space
* can be obtained from malloc().
* This is very portable in the sense that it'll compile on almost anything,
* but you'd better have lots of main memory (or virtual memory) if you want
* to process big images.
* Note that the max_memory_to_use option is ignored by this implementation.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jmemsys.h" /* import the system-dependent declarations */
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */
extern void * malloc JPP((size_t size));
extern void free JPP((void *ptr));
#endif
/*
* Memory allocation and freeing are controlled by the regular library
* routines malloc() and free().
*/
GLOBAL(void *)
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
{
return (void *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
{
free(object);
}
/*
* "Large" objects are treated the same as "small" ones.
* NB: although we include FAR keywords in the routine declarations,
* this file won't actually work in 80x86 small/medium model; at least,
* you probably won't be able to process useful-size images in only 64KB.
*/
GLOBAL(void FAR *)
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
{
return (void FAR *) malloc(sizeofobject);
}
GLOBAL(void)
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
{
free(object);
}
/*
* This routine computes the total memory space available for allocation.
* Here we always say, "we got all you want bud!"
*/
GLOBAL(long)
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
long max_bytes_needed, long already_allocated)
{
return max_bytes_needed;
}
/*
* Backing store (temporary file) management.
* Since jpeg_mem_available always promised the moon,
* this should never be called and we can just error out.
*/
GLOBAL(void)
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
long total_bytes_needed)
{
ERREXIT(cinfo, JERR_NO_BACKING_STORE);
}
/*
* These routines take care of any system-dependent initialization and
* cleanup required. Here, there isn't any.
*/
GLOBAL(long)
jpeg_mem_init (j_common_ptr cinfo)
{
return 0; /* just set max_memory_to_use to 0 */
}
GLOBAL(void)
jpeg_mem_term (j_common_ptr cinfo)
{
/* no work */
}
/*
* jmemsys.h
*
* Copyright (C) 1992-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This include file defines the interface between the system-independent
* and system-dependent portions of the JPEG memory manager. No other
* modules need include it. (The system-independent portion is jmemmgr.c;
* there are several different versions of the system-dependent portion.)
*
* This file works as-is for the system-dependent memory managers supplied
* in the IJG distribution. You may need to modify it if you write a
* custom memory manager. If system-dependent changes are needed in
* this file, the best method is to #ifdef them based on a configuration
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR
* and USE_MAC_MEMMGR.
*/
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_get_small jGetSmall
#define jpeg_free_small jFreeSmall
#define jpeg_get_large jGetLarge
#define jpeg_free_large jFreeLarge
#define jpeg_mem_available jMemAvail
#define jpeg_open_backing_store jOpenBackStore
#define jpeg_mem_init jMemInit
#define jpeg_mem_term jMemTerm
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/*
* These two functions are used to allocate and release small chunks of
* memory. (Typically the total amount requested through jpeg_get_small is
* no more than 20K or so; this will be requested in chunks of a few K each.)
* Behavior should be the same as for the standard library functions malloc
* and free; in particular, jpeg_get_small must return NULL on failure.
* On most systems, these ARE malloc and free. jpeg_free_small is passed the
* size of the object being freed, just in case it's needed.
* On an 80x86 machine using small-data memory model, these manage near heap.
*/
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object,
size_t sizeofobject));
/*
* These two functions are used to allocate and release large chunks of
* memory (up to the total free space designated by jpeg_mem_available).
* The interface is the same as above, except that on an 80x86 machine,
* far pointers are used. On most other machines these are identical to
* the jpeg_get/free_small routines; but we keep them separate anyway,
* in case a different allocation strategy is desirable for large chunks.
*/
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo,
size_t sizeofobject));
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
size_t sizeofobject));
/*
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that
* matter, but that case should never come into play). This macro is needed
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
* On those machines, we expect that jconfig.h will provide a proper value.
* On machines with 32-bit flat address spaces, any large constant may be used.
*
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
* size_t and will be a multiple of sizeof(align_type).
*/
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
#define MAX_ALLOC_CHUNK 1000000000L
#endif
/*
* This routine computes the total space still available for allocation by
* jpeg_get_large. If more space than this is needed, backing store will be
* used. NOTE: any memory already allocated must not be counted.
*
* There is a minimum space requirement, corresponding to the minimum
* feasible buffer sizes; jmemmgr.c will request that much space even if
* jpeg_mem_available returns zero. The maximum space needed, enough to hold
* all working storage in memory, is also passed in case it is useful.
* Finally, the total space already allocated is passed. If no better
* method is available, cinfo->mem->max_memory_to_use - already_allocated
* is often a suitable calculation.
*
* It is OK for jpeg_mem_available to underestimate the space available
* (that'll just lead to more backing-store access than is really necessary).
* However, an overestimate will lead to failure. Hence it's wise to subtract
* a slop factor from the true available space. 5% should be enough.
*
* On machines with lots of virtual memory, any large constant may be returned.
* Conversely, zero may be returned to always use the minimum amount of memory.
*/
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo,
long min_bytes_needed,
long max_bytes_needed,
long already_allocated));
/*
* This structure holds whatever state is needed to access a single
* backing-store object. The read/write/close method pointers are called
* by jmemmgr.c to manipulate the backing-store object; all other fields
* are private to the system-dependent backing store routines.
*/
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
typedef unsigned short XMSH; /* type of extended-memory handles */
typedef unsigned short EMSH; /* type of expanded-memory handles */
typedef union {
short file_handle; /* DOS file handle if it's a temp file */
XMSH xms_handle; /* handle if it's a chunk of XMS */
EMSH ems_handle; /* handle if it's a chunk of EMS */
} handle_union;
#endif /* USE_MSDOS_MEMMGR */
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */
#include <Files.h>
#endif /* USE_MAC_MEMMGR */
typedef struct backing_store_struct * backing_store_ptr;
typedef struct backing_store_struct {
/* Methods for reading/writing/closing this backing-store object */
JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
backing_store_ptr info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
backing_store_ptr info,
void FAR * buffer_address,
long file_offset, long byte_count));
JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
backing_store_ptr info));
/* Private fields for system-dependent backing-store management */
#ifdef USE_MSDOS_MEMMGR
/* For the MS-DOS manager (jmemdos.c), we need: */
handle_union handle; /* reference to backing-store storage object */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
#ifdef USE_MAC_MEMMGR
/* For the Mac manager (jmemmac.c), we need: */
short temp_file; /* file reference number to temp file */
FSSpec tempSpec; /* the FSSpec for the temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
#else
/* For a typical implementation with temp files, we need: */
FILE * temp_file; /* stdio reference to temp file */
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
#endif
#endif
} backing_store_info;
/*
* Initial opening of a backing-store object. This must fill in the
* read/write/close pointers in the object. The read/write routines
* may take an error exit if the specified maximum file size is exceeded.
* (If jpeg_mem_available always returns a large value, this routine can
* just take an error exit.)
*/
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo,
backing_store_ptr info,
long total_bytes_needed));
/*
* These routines take care of any system-dependent initialization and
* cleanup required. jpeg_mem_init will be called before anything is
* allocated (and, therefore, nothing in cinfo is of use except the error
* manager pointer). It should return a suitable default value for
* max_memory_to_use; this may subsequently be overridden by the surrounding
* application. (Note that max_memory_to_use is only important if
* jpeg_mem_available chooses to consult it ... no one else will.)
* jpeg_mem_term may assume that all requested memory has been freed and that
* all opened backing-store objects have been closed.
*/
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo));
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo));
/*
* jmorecfg.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains additional configuration options that customize the
* JPEG software for special applications or support machine-dependent
* optimizations. Most users will not need to touch this file.
*/
/*
* Define BITS_IN_JSAMPLE as either
* 8 for 8-bit sample values (the usual setting)
* 12 for 12-bit sample values
* Only 8 and 12 are legal data precisions for lossy JPEG according to the
* JPEG standard, and the IJG code does not support anything else!
* We do not support run-time selection of data precision, sorry.
*/
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
/*
* Maximum number of components (color channels) allowed in JPEG image.
* To meet the letter of the JPEG spec, set this to 255. However, darn
* few applications need more than 4 channels (maybe 5 for CMYK + alpha
* mask). We recommend 10 as a reasonable compromise; use 4 if you are
* really short on memory. (Each allowed component costs a hundred or so
* bytes of storage, whether actually used in an image or not.)
*/
#define MAX_COMPONENTS 10 /* maximum number of image components */
/*
* Basic data types.
* You may need to change these if you have a machine with unusual data
* type sizes; for example, "char" not 8 bits, "short" not 16 bits,
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
* but it had better be at least 16.
*/
/* Representation of a single sample (pixel element value).
* We frequently allocate large arrays of these, so it's important to keep
* them small. But if you have memory to burn and access to char or short
* arrays is very slow on your hardware, you might want to change these.
*/
#if BITS_IN_JSAMPLE == 8
/* JSAMPLE should be the smallest type that will hold the values 0..255.
* You can use a signed char by having GETJSAMPLE mask it with 0xFF.
*/
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JSAMPLE;
#ifdef CHAR_IS_UNSIGNED
#define GETJSAMPLE(value) ((int) (value))
#else
#define GETJSAMPLE(value) ((int) (value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
#define MAXJSAMPLE 255
#define CENTERJSAMPLE 128
#endif /* BITS_IN_JSAMPLE == 8 */
#if BITS_IN_JSAMPLE == 12
/* JSAMPLE should be the smallest type that will hold the values 0..4095.
* On nearly all machines "short" will do nicely.
*/
typedef short JSAMPLE;
#define GETJSAMPLE(value) ((int) (value))
#define MAXJSAMPLE 4095
#define CENTERJSAMPLE 2048
#endif /* BITS_IN_JSAMPLE == 12 */
/* Representation of a DCT frequency coefficient.
* This should be a signed value of at least 16 bits; "short" is usually OK.
* Again, we allocate large arrays of these, but you can change to int
* if you have memory to burn and "short" is really slow.
*/
typedef short JCOEF;
/* Compressed datastreams are represented as arrays of JOCTET.
* These must be EXACTLY 8 bits wide, at least once they are written to
* external storage. Note that when using the stdio data source/destination
* managers, this is also the data type passed to fread/fwrite.
*/
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char JOCTET;
#define GETJOCTET(value) (value)
#else /* not HAVE_UNSIGNED_CHAR */
typedef char JOCTET;
#ifdef CHAR_IS_UNSIGNED
#define GETJOCTET(value) (value)
#else
#define GETJOCTET(value) ((value) & 0xFF)
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
/* These typedefs are used for various table entries and so forth.
* They must be at least as wide as specified; but making them too big
* won't cost a huge amount of memory, so we don't provide special
* extraction code like we did for JSAMPLE. (In other words, these
* typedefs live at a different point on the speed/space tradeoff curve.)
*/
/* UINT8 must hold at least the values 0..255. */
#ifdef HAVE_UNSIGNED_CHAR
typedef unsigned char UINT8;
#else /* not HAVE_UNSIGNED_CHAR */
#ifdef CHAR_IS_UNSIGNED
typedef char UINT8;
#else /* not CHAR_IS_UNSIGNED */
typedef short UINT8;
#endif /* CHAR_IS_UNSIGNED */
#endif /* HAVE_UNSIGNED_CHAR */
/* UINT16 must hold at least the values 0..65535. */
#ifdef HAVE_UNSIGNED_SHORT
typedef unsigned short UINT16;
#else /* not HAVE_UNSIGNED_SHORT */
typedef unsigned int UINT16;
#endif /* HAVE_UNSIGNED_SHORT */
/* INT16 must hold at least the values -32768..32767. */
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
typedef short INT16;
#endif
/* INT32 must hold at least signed 32-bit values. */
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
typedef long INT32;
#endif
/* Datatype used for image dimensions. The JPEG standard only supports
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
* "unsigned int" is sufficient on all machines. However, if you need to
* handle larger images and you don't mind deviating from the spec, you
* can change this datatype.
*/
typedef unsigned int JDIMENSION;
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
/* These macros are used in all function definitions and extern declarations.
* You could modify them if you need to change function linkage conventions;
* in particular, you'll need to do that to make the library a Windows DLL.
* Another application is to make all functions global for use with debuggers
* or code profilers that require it.
*/
/* a function called through method pointers: */
#define METHODDEF(type) static type
/* a function used only in its module: */
#define LOCAL(type) static type
/* a function referenced thru EXTERNs: */
#define GLOBAL(type) type
/* a reference to a GLOBAL function: */
#define EXTERN(type) extern type
/* This macro is used to declare a "method", that is, a function pointer.
* We want to supply prototype parameters if the compiler can cope.
* Note that the arglist parameter must be parenthesized!
* Again, you can customize this if you need special linkage keywords.
*/
#ifdef HAVE_PROTOTYPES
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist
#else
#define JMETHOD(type,methodname,arglist) type (*methodname) ()
#endif
/* Here is the pseudo-keyword for declaring pointers that must be "far"
* on 80x86 machines. Most of the specialized coding for 80x86 is handled
* by just saying "FAR *" where such a pointer is needed. In a few places
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
*/
#ifdef NEED_FAR_POINTERS
#define FAR far
#else
#define FAR
#endif
/*
* On a few systems, type boolean and/or its values FALSE, TRUE may appear
* in standard header files. Or you may have conflicts with application-
* specific header files that you want to include together with these files.
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
*/
#ifndef HAVE_BOOLEAN
typedef int boolean;
#endif
#ifndef FALSE /* in case these macros already exist */
#define FALSE 0 /* values of boolean */
#endif
#ifndef TRUE
#define TRUE 1
#endif
/*
* The remaining options affect code selection within the JPEG library,
* but they don't need to be visible to most applications using the library.
* To minimize application namespace pollution, the symbols won't be
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
*/
#ifdef JPEG_INTERNALS
#define JPEG_INTERNAL_OPTIONS
#endif
#ifdef JPEG_INTERNAL_OPTIONS
/*
* These defines indicate whether to include various optional functions.
* Undefining some of these symbols will produce a smaller but less capable
* library. Note that you can leave certain source files out of the
* compilation/linking process if you've #undef'd the corresponding symbols.
* (You may HAVE to do that if your compiler doesn't like null source files.)
*/
/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
/* Capability options common to encoder and decoder: */
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
/* Encoder capability options: */
#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
/* Note: if you selected 12-bit data precision, it is dangerous to turn off
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
* precision, so jchuff.c normally uses entropy optimization to compute
* usable tables for higher precision. If you don't want to do optimization,
* you'll have to supply different default Huffman tables.
* The exact same statements apply for progressive JPEG: the default tables
* don't work for progressive mode. (This may get fixed, however.)
*/
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
/* Decoder capability options: */
#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
/* more capability options later, no doubt */
/*
* Ordering of RGB data in scanlines passed to or from the application.
* If your application wants to deal with data in the order B,G,R, just
* change these macros. You can also deal with formats such as R,G,B,X
* (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
* the offsets will also change the order in which colormap data is organized.
* RESTRICTIONS:
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
* 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
* useful if you are using JPEG color spaces other than YCbCr or grayscale.
* 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
* is not 3 (they don't understand about dummy color components!). So you
* can't use color quantization if you change that value.
*/
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
#define RGB_GREEN 1 /* Offset of Green */
#define RGB_BLUE 2 /* Offset of Blue */
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */
/* Definitions for speed-related optimizations. */
/* If your compiler supports inline functions, define INLINE
* as the inline keyword; otherwise define it as empty.
*/
#ifndef INLINE
#ifdef __GNUC__ /* for instance, GNU C knows about inline */
#define INLINE __inline__
#endif
#ifndef INLINE
#define INLINE /* default is to define it as empty */
#endif
#endif
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
* as short on such a machine. MULTIPLIER must be at least 16 bits wide.
*/
#ifndef MULTIPLIER
#define MULTIPLIER int /* type for fastest integer multiply */
#endif
/* FAST_FLOAT should be either float or double, whichever is done faster
* by your compiler. (Note that this type is only used in the floating point
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
* Typically, float is faster in ANSI C compilers, while double is faster in
* pre-ANSI compilers (because they insist on converting to double anyway).
* The code below therefore chooses float if we have ANSI-style prototypes.
*/
#ifndef FAST_FLOAT
#ifdef HAVE_PROTOTYPES
#define FAST_FLOAT float
#else
#define FAST_FLOAT double
#endif
#endif
#endif /* JPEG_INTERNAL_OPTIONS */
/*
* jpegint.h
*
* Copyright (C) 1991-1997, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file provides common declarations for the various JPEG modules.
* These declarations are considered internal to the JPEG library; most
* applications using the library shouldn't need to include this file.
*/
/* Declarations for both compression & decompression */
typedef enum { /* Operating modes for buffer controllers */
JBUF_PASS_THRU, /* Plain stripwise operation */
/* Remaining modes require a full-image buffer to have been created */
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
} J_BUF_MODE;
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
#define CSTATE_START 100 /* after create_compress */
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
#define DSTATE_START 200 /* after create_decompress */
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
/* Declarations for compression modules */
/* Master control module */
struct jpeg_comp_master {
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
/* State variables made visible to other modules */
boolean call_pass_startup; /* True if pass_startup must be called */
boolean is_last_pass; /* True during last pass */
};
/* Main buffer control (downsampled-data buffer) */
struct jpeg_c_main_controller {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, process_data, (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail));
};
/* Compression preprocessing (downsampling input buffer control) */
struct jpeg_c_prep_controller {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
JSAMPARRAY input_buf,
JDIMENSION *in_row_ctr,
JDIMENSION in_rows_avail,
JSAMPIMAGE output_buf,
JDIMENSION *out_row_group_ctr,
JDIMENSION out_row_groups_avail));
};
/* Coefficient buffer control */
struct jpeg_c_coef_controller {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
JSAMPIMAGE input_buf));
};
/* Colorspace conversion */
struct jpeg_color_converter {
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
JMETHOD(void, color_convert, (j_compress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
JDIMENSION output_row, int num_rows));
};
/* Downsampling */
struct jpeg_downsampler {
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
JMETHOD(void, downsample, (j_compress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
JSAMPIMAGE output_buf,
JDIMENSION out_row_group_index));
boolean need_context_rows; /* TRUE if need rows above & below */
};
/* Forward DCT (also controls coefficient quantization) */
struct jpeg_forward_dct {
JMETHOD(void, start_pass, (j_compress_ptr cinfo));
/* perhaps this should be an array??? */
JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
jpeg_component_info * compptr,
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
JDIMENSION start_row, JDIMENSION start_col,
JDIMENSION num_blocks));
};
/* Entropy encoding */
struct jpeg_entropy_encoder {
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
};
/* Marker writing */
struct jpeg_marker_writer {
JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
/* These routines are exported to allow insertion of extra markers */
/* Probably only COM and APPn markers should be written this way */
JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker,
unsigned int datalen));
JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val));
};
/* Declarations for decompression modules */
/* Master control module */
struct jpeg_decomp_master {
JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
/* State variables made visible to other modules */
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
};
/* Input control module */
struct jpeg_input_controller {
JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
/* State variables made visible to other modules */
boolean has_multiple_scans; /* True if file has multiple scans */
boolean eoi_reached; /* True when EOI has been consumed */
};
/* Main buffer control (downsampled-data buffer) */
struct jpeg_d_main_controller {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, process_data, (j_decompress_ptr cinfo,
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
};
/* Coefficient buffer control */
struct jpeg_d_coef_controller {
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
JSAMPIMAGE output_buf));
/* Pointer to array of coefficient virtual arrays, or NULL if none */
jvirt_barray_ptr *coef_arrays;
};
/* Decompression postprocessing (color quantization buffer control) */
struct jpeg_d_post_controller {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf,
JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
};
/* Marker reading & parsing */
struct jpeg_marker_reader {
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
/* Read markers until SOS or EOI.
* Returns same codes as are defined for jpeg_consume_input:
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
*/
JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
/* Read a restart marker --- exported for use by entropy decoder only */
jpeg_marker_parser_method read_restart_marker;
/* State of marker reader --- nominally internal, but applications
* supplying COM or APPn handlers might like to know the state.
*/
boolean saw_SOI; /* found SOI? */
boolean saw_SOF; /* found SOF? */
int next_restart_num; /* next restart number expected (0-7) */
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
};
/* Entropy decoding */
struct jpeg_entropy_decoder {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
JBLOCKROW *MCU_data));
/* This is here to share code between baseline and progressive decoders; */
/* other modules probably should not use it */
boolean insufficient_data; /* set TRUE after emitting warning */
};
/* Inverse DCT (also performs dequantization) */
typedef JMETHOD(void, inverse_DCT_method_ptr,
(j_decompress_ptr cinfo, jpeg_component_info * compptr,
JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col));
struct jpeg_inverse_dct {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
/* It is useful to allow each component to have a separate IDCT method. */
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
};
/* Upsampling (note that upsampler must also call color converter) */
struct jpeg_upsampler {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
JMETHOD(void, upsample, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf,
JDIMENSION *in_row_group_ctr,
JDIMENSION in_row_groups_avail,
JSAMPARRAY output_buf,
JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail));
boolean need_context_rows; /* TRUE if need rows above & below */
};
/* Colorspace conversion */
struct jpeg_color_deconverter {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
JSAMPIMAGE input_buf, JDIMENSION input_row,
JSAMPARRAY output_buf, int num_rows));
};
/* Color quantization or color precision reduction */
struct jpeg_color_quantizer {
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPARRAY output_buf,
int num_rows));
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
};
/* Miscellaneous useful macros */
#undef MAX
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#undef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
/* We assume that right shift corresponds to signed division by 2 with
* rounding towards minus infinity. This is correct for typical "arithmetic
* shift" instructions that shift in copies of the sign bit. But some
* C compilers implement >> with an unsigned shift. For these machines you
* must define RIGHT_SHIFT_IS_UNSIGNED.
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
* It is only applied with constant shift counts. SHIFT_TEMPS must be
* included in the variables of any routine using RIGHT_SHIFT.
*/
#ifdef RIGHT_SHIFT_IS_UNSIGNED
#define SHIFT_TEMPS INT32 shift_temp;
#define RIGHT_SHIFT(x,shft) \
((shift_temp = (x)) < 0 ? \
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
(shift_temp >> (shft)))
#else
#define SHIFT_TEMPS
#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
#endif
/* Short forms of external names for systems with brain-damaged linkers. */
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jinit_compress_master jICompress
#define jinit_c_master_control jICMaster
#define jinit_c_main_controller jICMainC
#define jinit_c_prep_controller jICPrepC
#define jinit_c_coef_controller jICCoefC
#define jinit_color_converter jICColor
#define jinit_downsampler jIDownsampler
#define jinit_forward_dct jIFDCT
#define jinit_huff_encoder jIHEncoder
#define jinit_phuff_encoder jIPHEncoder
#define jinit_marker_writer jIMWriter
#define jinit_master_decompress jIDMaster
#define jinit_d_main_controller jIDMainC
#define jinit_d_coef_controller jIDCoefC
#define jinit_d_post_controller jIDPostC
#define jinit_input_controller jIInCtlr
#define jinit_marker_reader jIMReader
#define jinit_huff_decoder jIHDecoder
#define jinit_phuff_decoder jIPHDecoder
#define jinit_inverse_dct jIIDCT
#define jinit_upsampler jIUpsampler
#define jinit_color_deconverter jIDColor
#define jinit_1pass_quantizer jI1Quant
#define jinit_2pass_quantizer jI2Quant
#define jinit_merged_upsampler jIMUpsampler
#define jinit_memory_mgr jIMemMgr
#define jdiv_round_up jDivRound
#define jround_up jRound
#define jcopy_sample_rows jCopySamples
#define jcopy_block_row jCopyBlocks
#define jzero_far jZeroFar
#define jpeg_zigzag_order jZIGTable
#define jpeg_natural_order jZAGTable
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Compression module initialization routines */
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo,
boolean transcode_only));
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_phuff_encoder JPP((j_compress_ptr cinfo));
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo));
/* Decompression module initialization routines */
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo,
boolean need_full_buffer));
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
/* Memory manager initialization */
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo));
/* Utility routines in jutils.c */
EXTERN(long) jdiv_round_up JPP((long a, long b));
EXTERN(long) jround_up JPP((long a, long b));
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
JSAMPARRAY output_array, int dest_row,
int num_rows, JDIMENSION num_cols));
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
JDIMENSION num_blocks));
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero));
/* Constant tables in jutils.c */
#if 0 /* This table is not actually needed in v6a */
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
#endif
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
/* Suppress undefined-structure complaints if necessary. */
#ifdef INCOMPLETE_TYPES_BROKEN
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
struct jvirt_sarray_control { long dummy; };
struct jvirt_barray_control { long dummy; };
#endif
#endif /* INCOMPLETE_TYPES_BROKEN */
/*
* jpeglib.h
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file defines the application interface for the JPEG library.
* Most applications using the library need only include this file,
* and perhaps jerror.h if they want to know the exact error codes.
*/
#ifndef JPEGLIB_H
#define JPEGLIB_H
/*
* First we include the configuration files that record how this
* installation of the JPEG library is set up. jconfig.h can be
* generated automatically for many systems. jmorecfg.h contains
* manual configuration options that most people need not worry about.
*/
#ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */
#include "jconfig.h" /* widely used configuration options */
#endif
#include "jmorecfg.h" /* seldom changed options */
/* Version ID for the JPEG library.
* Might be useful for tests like "#if JPEG_LIB_VERSION >= 60".
*/
#define JPEG_LIB_VERSION 62 /* Version 6b */
/* Various constants determining the sizes of things.
* All of these are specified by the JPEG standard, so don't change them
* if you want to be compatible.
*/
#define DCTSIZE 8 /* The basic DCT block is 8x8 samples */
#define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */
#define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */
#define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */
#define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */
#define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */
#define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */
/* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard;
* the PostScript DCT filter can emit files with many more than 10 blocks/MCU.
* If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU
* to handle it. We even let you do this from the jconfig.h file. However,
* we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe
* sometimes emits noncompliant files doesn't mean you should too.
*/
#define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */
#ifndef D_MAX_BLOCKS_IN_MCU
#define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */
#endif
/* Data structures for images (arrays of samples and of DCT coefficients).
* On 80x86 machines, the image arrays are too big for near pointers,
* but the pointer arrays can fit in near memory.
*/
typedef JSAMPLE FAR *JSAMPROW; /* ptr to one image row of pixel samples. */
typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */
typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */
typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */
typedef JBLOCK FAR *JBLOCKROW; /* pointer to one row of coefficient blocks */
typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */
typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */
typedef JCOEF FAR *JCOEFPTR; /* useful in a couple of places */
/* Types for JPEG compression parameters and working tables. */
/* DCT coefficient quantization tables. */
typedef struct {
/* This array gives the coefficient quantizers in natural array order
* (not the zigzag order in which they are stored in a JPEG DQT marker).
* CAUTION: IJG versions prior to v6a kept this array in zigzag order.
*/
UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */
/* This field is used only during compression. It's initialized FALSE when
* the table is created, and set TRUE when it's been output to the file.
* You could suppress output of a table by setting this to TRUE.
* (See jpeg_suppress_tables for an example.)
*/
boolean sent_table; /* TRUE when table has been output */
} JQUANT_TBL;
/* Huffman coding tables. */
typedef struct {
/* These two fields directly represent the contents of a JPEG DHT marker */
UINT8 bits[17]; /* bits[k] = # of symbols with codes of */
/* length k bits; bits[0] is unused */
UINT8 huffval[256]; /* The symbols, in order of incr code length */
/* This field is used only during compression. It's initialized FALSE when
* the table is created, and set TRUE when it's been output to the file.
* You could suppress output of a table by setting this to TRUE.
* (See jpeg_suppress_tables for an example.)
*/
boolean sent_table; /* TRUE when table has been output */
} JHUFF_TBL;
/* Basic info about one component (color channel). */
typedef struct {
/* These values are fixed over the whole image. */
/* For compression, they must be supplied by parameter setup; */
/* for decompression, they are read from the SOF marker. */
int component_id; /* identifier for this component (0..255) */
int component_index; /* its index in SOF or cinfo->comp_info[] */
int h_samp_factor; /* horizontal sampling factor (1..4) */
int v_samp_factor; /* vertical sampling factor (1..4) */
int quant_tbl_no; /* quantization table selector (0..3) */
/* These values may vary between scans. */
/* For compression, they must be supplied by parameter setup; */
/* for decompression, they are read from the SOS marker. */
/* The decompressor output side may not use these variables. */
int dc_tbl_no; /* DC entropy table selector (0..3) */
int ac_tbl_no; /* AC entropy table selector (0..3) */
/* Remaining fields should be treated as private by applications. */
/* These values are computed during compression or decompression startup: */
/* Component's size in DCT blocks.
* Any dummy blocks added to complete an MCU are not counted; therefore
* these values do not depend on whether a scan is interleaved or not.
*/
JDIMENSION width_in_blocks;
JDIMENSION height_in_blocks;
/* Size of a DCT block in samples. Always DCTSIZE for compression.
* For decompression this is the size of the output from one DCT block,
* reflecting any scaling we choose to apply during the IDCT step.
* Values of 1,2,4,8 are likely to be supported. Note that different
* components may receive different IDCT scalings.
*/
int DCT_scaled_size;
/* The downsampled dimensions are the component's actual, unpadded number
* of samples at the main buffer (preprocessing/compression interface), thus
* downsampled_width = ceil(image_width * Hi/Hmax)
* and similarly for height. For decompression, IDCT scaling is included, so
* downsampled_width = ceil(image_width * Hi/Hmax * DCT_scaled_size/DCTSIZE)
*/
JDIMENSION downsampled_width; /* actual width in samples */
JDIMENSION downsampled_height; /* actual height in samples */
/* This flag is used only for decompression. In cases where some of the
* components will be ignored (eg grayscale output from YCbCr image),
* we can skip most computations for the unused components.
*/
boolean component_needed; /* do we need the value of this component? */
/* These values are computed before starting a scan of the component. */
/* The decompressor output side may not use these variables. */
int MCU_width; /* number of blocks per MCU, horizontally */
int MCU_height; /* number of blocks per MCU, vertically */
int MCU_blocks; /* MCU_width * MCU_height */
int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_scaled_size */
int last_col_width; /* # of non-dummy blocks across in last MCU */
int last_row_height; /* # of non-dummy blocks down in last MCU */
/* Saved quantization table for component; NULL if none yet saved.
* See jdinput.c comments about the need for this information.
* This field is currently used only for decompression.
*/
JQUANT_TBL * quant_table;
/* Private per-component storage for DCT or IDCT subsystem. */
void * dct_table;
} jpeg_component_info;
/* The script for encoding a multiple-scan file is an array of these: */
typedef struct {
int comps_in_scan; /* number of components encoded in this scan */
int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */
int Ss, Se; /* progressive JPEG spectral selection parms */
int Ah, Al; /* progressive JPEG successive approx. parms */
} jpeg_scan_info;
/* The decompressor can save APPn and COM markers in a list of these: */
typedef struct jpeg_marker_struct FAR * jpeg_saved_marker_ptr;
struct jpeg_marker_struct {
jpeg_saved_marker_ptr next; /* next in list, or NULL */
UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */
unsigned int original_length; /* # bytes of data in the file */
unsigned int data_length; /* # bytes of data saved at data[] */
JOCTET FAR * data; /* the data contained in the marker */
/* the marker length word is not counted in data_length or original_length */
};
/* Known color spaces. */
typedef enum {
JCS_UNKNOWN, /* error/unspecified */
JCS_GRAYSCALE, /* monochrome */
JCS_RGB, /* red/green/blue */
JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */
JCS_CMYK, /* C/M/Y/K */
JCS_YCCK /* Y/Cb/Cr/K */
} J_COLOR_SPACE;
/* DCT/IDCT algorithm options. */
typedef enum {
JDCT_ISLOW, /* slow but accurate integer algorithm */
JDCT_IFAST, /* faster, less accurate integer method */
JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
} J_DCT_METHOD;
#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
#define JDCT_DEFAULT JDCT_ISLOW
#endif
#ifndef JDCT_FASTEST /* may be overridden in jconfig.h */
#define JDCT_FASTEST JDCT_IFAST
#endif
/* Dithering options for decompression. */
typedef enum {
JDITHER_NONE, /* no dithering */
JDITHER_ORDERED, /* simple ordered dither */
JDITHER_FS /* Floyd-Steinberg error diffusion dither */
} J_DITHER_MODE;
/* Common fields between JPEG compression and decompression master structs. */
#define jpeg_common_fields \
struct jpeg_error_mgr * err; /* Error handler module */\
struct jpeg_memory_mgr * mem; /* Memory manager module */\
struct jpeg_progress_mgr * progress; /* Progress monitor, or NULL if none */\
void * client_data; /* Available for use by application */\
boolean is_decompressor; /* So common code can tell which is which */\
int global_state /* For checking call sequence validity */
/* Routines that are to be used by both halves of the library are declared
* to receive a pointer to this structure. There are no actual instances of
* jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct.
*/
struct jpeg_common_struct {
jpeg_common_fields; /* Fields common to both master struct types */
/* Additional fields follow in an actual jpeg_compress_struct or
* jpeg_decompress_struct. All three structs must agree on these
* initial fields! (This would be a lot cleaner in C++.)
*/
};
typedef struct jpeg_common_struct * j_common_ptr;
typedef struct jpeg_compress_struct * j_compress_ptr;
typedef struct jpeg_decompress_struct * j_decompress_ptr;
/* Master record for a compression instance */
struct jpeg_compress_struct {
jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */
/* Destination for compressed data */
struct jpeg_destination_mgr * dest;
/* Description of source image --- these fields must be filled in by
* outer application before starting compression. in_color_space must
* be correct before you can even call jpeg_set_defaults().
*/
JDIMENSION image_width; /* input image width */
JDIMENSION image_height; /* input image height */
int input_components; /* # of color components in input image */
J_COLOR_SPACE in_color_space; /* colorspace of input image */
double input_gamma; /* image gamma of input image */
/* Compression parameters --- these fields must be set before calling
* jpeg_start_compress(). We recommend calling jpeg_set_defaults() to
* initialize everything to reasonable defaults, then changing anything
* the application specifically wants to change. That way you won't get
* burnt when new parameters are added. Also note that there are several
* helper routines to simplify changing parameters.
*/
int data_precision; /* bits of precision in image data */
int num_components; /* # of color components in JPEG image */
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
jpeg_component_info * comp_info;
/* comp_info[i] describes component that appears i'th in SOF */
JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
/* ptrs to coefficient quantization tables, or NULL if not defined */
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
/* ptrs to Huffman coding tables, or NULL if not defined */
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
int num_scans; /* # of entries in scan_info array */
const jpeg_scan_info * scan_info; /* script for multi-scan file, or NULL */
/* The default value of scan_info is NULL, which causes a single-scan
* sequential JPEG file to be emitted. To create a multi-scan file,
* set num_scans and scan_info to point to an array of scan definitions.
*/
boolean raw_data_in; /* TRUE=caller supplies downsampled data */
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
boolean optimize_coding; /* TRUE=optimize entropy encoding parms */
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
int smoothing_factor; /* 1..100, or 0 for no input smoothing */
J_DCT_METHOD dct_method; /* DCT algorithm selector */
/* The restart interval can be specified in absolute MCUs by setting
* restart_interval, or in MCU rows by setting restart_in_rows
* (in which case the correct restart_interval will be figured
* for each scan).
*/
unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */
int restart_in_rows; /* if > 0, MCU rows per restart interval */
/* Parameters controlling emission of special markers. */
boolean write_JFIF_header; /* should a JFIF marker be written? */
UINT8 JFIF_major_version; /* What to write for the JFIF version number */
UINT8 JFIF_minor_version;
/* These three values are not used by the JPEG code, merely copied */
/* into the JFIF APP0 marker. density_unit can be 0 for unknown, */
/* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */
/* ratio is defined by X_density/Y_density even when density_unit=0. */
UINT8 density_unit; /* JFIF code for pixel size units */
UINT16 X_density; /* Horizontal pixel density */
UINT16 Y_density; /* Vertical pixel density */
boolean write_Adobe_marker; /* should an Adobe marker be written? */
/* State variable: index of next scanline to be written to
* jpeg_write_scanlines(). Application may use this to control its
* processing loop, e.g., "while (next_scanline < image_height)".
*/
JDIMENSION next_scanline; /* 0 .. image_height-1 */
/* Remaining fields are known throughout compressor, but generally
* should not be touched by a surrounding application.
*/
/*
* These fields are computed during compression startup
*/
boolean progressive_mode; /* TRUE if scan script uses progressive mode */
int max_h_samp_factor; /* largest h_samp_factor */
int max_v_samp_factor; /* largest v_samp_factor */
JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */
/* The coefficient controller receives data in units of MCU rows as defined
* for fully interleaved scans (whether the JPEG file is interleaved or not).
* There are v_samp_factor * DCTSIZE sample rows of each component in an
* "iMCU" (interleaved MCU) row.
*/
/*
* These fields are valid during any one scan.
* They describe the components and MCUs actually appearing in the scan.
*/
int comps_in_scan; /* # of JPEG components in this scan */
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
/* *cur_comp_info[i] describes component that appears i'th in SOS */
JDIMENSION MCUs_per_row; /* # of MCUs across the image */
JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
int blocks_in_MCU; /* # of DCT blocks per MCU */
int MCU_membership[C_MAX_BLOCKS_IN_MCU];
/* MCU_membership[i] is index in cur_comp_info of component owning */
/* i'th block in an MCU */
int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
/*
* Links to compression subobjects (methods and private variables of modules)
*/
struct jpeg_comp_master * master;
struct jpeg_c_main_controller * main;
struct jpeg_c_prep_controller * prep;
struct jpeg_c_coef_controller * coef;
struct jpeg_marker_writer * marker;
struct jpeg_color_converter * cconvert;
struct jpeg_downsampler * downsample;
struct jpeg_forward_dct * fdct;
struct jpeg_entropy_encoder * entropy;
jpeg_scan_info * script_space; /* workspace for jpeg_simple_progression */
int script_space_size;
};
/* Master record for a decompression instance */
struct jpeg_decompress_struct {
jpeg_common_fields; /* Fields shared with jpeg_compress_struct */
/* Source of compressed data */
struct jpeg_source_mgr * src;
/* Basic description of image --- filled in by jpeg_read_header(). */
/* Application may inspect these values to decide how to process image. */
JDIMENSION image_width; /* nominal image width (from SOF marker) */
JDIMENSION image_height; /* nominal image height */
int num_components; /* # of color components in JPEG image */
J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */
/* Decompression processing parameters --- these fields must be set before
* calling jpeg_start_decompress(). Note that jpeg_read_header() initializes
* them to default values.
*/
J_COLOR_SPACE out_color_space; /* colorspace for output */
unsigned int scale_num, scale_denom; /* fraction by which to scale image */
double output_gamma; /* image gamma wanted in output */
boolean buffered_image; /* TRUE=multiple output passes */
boolean raw_data_out; /* TRUE=downsampled data wanted */
J_DCT_METHOD dct_method; /* IDCT algorithm selector */
boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */
boolean do_block_smoothing; /* TRUE=apply interblock smoothing */
boolean quantize_colors; /* TRUE=colormapped output wanted */
/* the following are ignored if not quantize_colors: */
J_DITHER_MODE dither_mode; /* type of color dithering to use */
boolean two_pass_quantize; /* TRUE=use two-pass color quantization */
int desired_number_of_colors; /* max # colors to use in created colormap */
/* these are significant only in buffered-image mode: */
boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */
boolean enable_external_quant;/* enable future use of external colormap */
boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */
/* Description of actual output image that will be returned to application.
* These fields are computed by jpeg_start_decompress().
* You can also use jpeg_calc_output_dimensions() to determine these values
* in advance of calling jpeg_start_decompress().
*/
JDIMENSION output_width; /* scaled image width */
JDIMENSION output_height; /* scaled image height */
int out_color_components; /* # of color components in out_color_space */
int output_components; /* # of color components returned */
/* output_components is 1 (a colormap index) when quantizing colors;
* otherwise it equals out_color_components.
*/
int rec_outbuf_height; /* min recommended height of scanline buffer */
/* If the buffer passed to jpeg_read_scanlines() is less than this many rows
* high, space and time will be wasted due to unnecessary data copying.
* Usually rec_outbuf_height will be 1 or 2, at most 4.
*/
/* When quantizing colors, the output colormap is described by these fields.
* The application can supply a colormap by setting colormap non-NULL before
* calling jpeg_start_decompress; otherwise a colormap is created during
* jpeg_start_decompress or jpeg_start_output.
* The map has out_color_components rows and actual_number_of_colors columns.
*/
int actual_number_of_colors; /* number of entries in use */
JSAMPARRAY colormap; /* The color map as a 2-D pixel array */
/* State variables: these variables indicate the progress of decompression.
* The application may examine these but must not modify them.
*/
/* Row index of next scanline to be read from jpeg_read_scanlines().
* Application may use this to control its processing loop, e.g.,
* "while (output_scanline < output_height)".
*/
JDIMENSION output_scanline; /* 0 .. output_height-1 */
/* Current input scan number and number of iMCU rows completed in scan.
* These indicate the progress of the decompressor input side.
*/
int input_scan_number; /* Number of SOS markers seen so far */
JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */
/* The "output scan number" is the notional scan being displayed by the
* output side. The decompressor will not allow output scan/row number
* to get ahead of input scan/row, but it can fall arbitrarily far behind.
*/
int output_scan_number; /* Nominal scan number being displayed */
JDIMENSION output_iMCU_row; /* Number of iMCU rows read */
/* Current progression status. coef_bits[c][i] indicates the precision
* with which component c's DCT coefficient i (in zigzag order) is known.
* It is -1 when no data has yet been received, otherwise it is the point
* transform (shift) value for the most recent scan of the coefficient
* (thus, 0 at completion of the progression).
* This pointer is NULL when reading a non-progressive file.
*/
int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */
/* Internal JPEG parameters --- the application usually need not look at
* these fields. Note that the decompressor output side may not use
* any parameters that can change between scans.
*/
/* Quantization and Huffman tables are carried forward across input
* datastreams when processing abbreviated JPEG datastreams.
*/
JQUANT_TBL * quant_tbl_ptrs[NUM_QUANT_TBLS];
/* ptrs to coefficient quantization tables, or NULL if not defined */
JHUFF_TBL * dc_huff_tbl_ptrs[NUM_HUFF_TBLS];
JHUFF_TBL * ac_huff_tbl_ptrs[NUM_HUFF_TBLS];
/* ptrs to Huffman coding tables, or NULL if not defined */
/* These parameters are never carried across datastreams, since they
* are given in SOF/SOS markers or defined to be reset by SOI.
*/
int data_precision; /* bits of precision in image data */
jpeg_component_info * comp_info;
/* comp_info[i] describes component that appears i'th in SOF */
boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */
boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */
UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */
UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */
UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */
unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */
/* These fields record data obtained from optional markers recognized by
* the JPEG library.
*/
boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */
/* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */
UINT8 JFIF_major_version; /* JFIF version number */
UINT8 JFIF_minor_version;
UINT8 density_unit; /* JFIF code for pixel size units */
UINT16 X_density; /* Horizontal pixel density */
UINT16 Y_density; /* Vertical pixel density */
boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */
UINT8 Adobe_transform; /* Color transform code from Adobe marker */
boolean CCIR601_sampling; /* TRUE=first samples are cosited */
/* Aside from the specific data retained from APPn markers known to the
* library, the uninterpreted contents of any or all APPn and COM markers
* can be saved in a list for examination by the application.
*/
jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */
/* Remaining fields are known throughout decompressor, but generally
* should not be touched by a surrounding application.
*/
/*
* These fields are computed during decompression startup
*/
int max_h_samp_factor; /* largest h_samp_factor */
int max_v_samp_factor; /* largest v_samp_factor */
int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */
JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */
/* The coefficient controller's input and output progress is measured in
* units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows
* in fully interleaved JPEG scans, but are used whether the scan is
* interleaved or not. We define an iMCU row as v_samp_factor DCT block
* rows of each component. Therefore, the IDCT output contains
* v_samp_factor*DCT_scaled_size sample rows of a component per iMCU row.
*/
JSAMPLE * sample_range_limit; /* table for fast range-limiting */
/*
* These fields are valid during any one scan.
* They describe the components and MCUs actually appearing in the scan.
* Note that the decompressor output side must not use these fields.
*/
int comps_in_scan; /* # of JPEG components in this scan */
jpeg_component_info * cur_comp_info[MAX_COMPS_IN_SCAN];
/* *cur_comp_info[i] describes component that appears i'th in SOS */
JDIMENSION MCUs_per_row; /* # of MCUs across the image */
JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */
int blocks_in_MCU; /* # of DCT blocks per MCU */
int MCU_membership[D_MAX_BLOCKS_IN_MCU];
/* MCU_membership[i] is index in cur_comp_info of component owning */
/* i'th block in an MCU */
int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */
/* This field is shared between entropy decoder and marker parser.
* It is either zero or the code of a JPEG marker that has been
* read from the data source, but has not yet been processed.
*/
int unread_marker;
/*
* Links to decompression subobjects (methods, private variables of modules)
*/
struct jpeg_decomp_master * master;
struct jpeg_d_main_controller * main;
struct jpeg_d_coef_controller * coef;
struct jpeg_d_post_controller * post;
struct jpeg_input_controller * inputctl;
struct jpeg_marker_reader * marker;
struct jpeg_entropy_decoder * entropy;
struct jpeg_inverse_dct * idct;
struct jpeg_upsampler * upsample;
struct jpeg_color_deconverter * cconvert;
struct jpeg_color_quantizer * cquantize;
};
/* "Object" declarations for JPEG modules that may be supplied or called
* directly by the surrounding application.
* As with all objects in the JPEG library, these structs only define the
* publicly visible methods and state variables of a module. Additional
* private fields may exist after the public ones.
*/
/* Error handler object */
struct jpeg_error_mgr {
/* Error exit handler: does not return to caller */
JMETHOD(void, error_exit, (j_common_ptr cinfo));
/* Conditionally emit a trace or warning message */
JMETHOD(void, emit_message, (j_common_ptr cinfo, int msg_level));
/* Routine that actually outputs a trace or error message */
JMETHOD(void, output_message, (j_common_ptr cinfo));
/* Format a message string for the most recent JPEG error or message */
JMETHOD(void, format_message, (j_common_ptr cinfo, char * buffer));
#define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */
/* Reset error state variables at start of a new image */
JMETHOD(void, reset_error_mgr, (j_common_ptr cinfo));
/* The message ID code and any parameters are saved here.
* A message can have one string parameter or up to 8 int parameters.
*/
int msg_code;
#define JMSG_STR_PARM_MAX 80
union {
int i[8];
char s[JMSG_STR_PARM_MAX];
} msg_parm;
/* Standard state variables for error facility */
int trace_level; /* max msg_level that will be displayed */
/* For recoverable corrupt-data errors, we emit a warning message,
* but keep going unless emit_message chooses to abort. emit_message
* should count warnings in num_warnings. The surrounding application
* can check for bad data by seeing if num_warnings is nonzero at the
* end of processing.
*/
long num_warnings; /* number of corrupt-data warnings */
/* These fields point to the table(s) of error message strings.
* An application can change the table pointer to switch to a different
* message list (typically, to change the language in which errors are
* reported). Some applications may wish to add additional error codes
* that will be handled by the JPEG library error mechanism; the second
* table pointer is used for this purpose.
*
* First table includes all errors generated by JPEG library itself.
* Error code 0 is reserved for a "no such error string" message.
*/
const char * const * jpeg_message_table; /* Library errors */
int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */
/* Second table can be added by application (see cjpeg/djpeg for example).
* It contains strings numbered first_addon_message..last_addon_message.
*/
const char * const * addon_message_table; /* Non-library errors */
int first_addon_message; /* code for first string in addon table */
int last_addon_message; /* code for last string in addon table */
};
/* Progress monitor object */
struct jpeg_progress_mgr {
JMETHOD(void, progress_monitor, (j_common_ptr cinfo));
long pass_counter; /* work units completed in this pass */
long pass_limit; /* total number of work units in this pass */
int completed_passes; /* passes completed so far */
int total_passes; /* total number of passes expected */
};
/* Data destination object for compression */
struct jpeg_destination_mgr {
JOCTET * next_output_byte; /* => next byte to write in buffer */
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
JMETHOD(void, init_destination, (j_compress_ptr cinfo));
JMETHOD(boolean, empty_output_buffer, (j_compress_ptr cinfo));
JMETHOD(void, term_destination, (j_compress_ptr cinfo));
};
/* Data source object for decompression */
struct jpeg_source_mgr {
const JOCTET * next_input_byte; /* => next byte to read from buffer */
size_t bytes_in_buffer; /* # of bytes remaining in buffer */
JMETHOD(void, init_source, (j_decompress_ptr cinfo));
JMETHOD(boolean, fill_input_buffer, (j_decompress_ptr cinfo));
JMETHOD(void, skip_input_data, (j_decompress_ptr cinfo, long num_bytes));
JMETHOD(boolean, resync_to_restart, (j_decompress_ptr cinfo, int desired));
JMETHOD(void, term_source, (j_decompress_ptr cinfo));
};
/* Memory manager object.
* Allocates "small" objects (a few K total), "large" objects (tens of K),
* and "really big" objects (virtual arrays with backing store if needed).
* The memory manager does not allow individual objects to be freed; rather,
* each created object is assigned to a pool, and whole pools can be freed
* at once. This is faster and more convenient than remembering exactly what
* to free, especially where malloc()/free() are not too speedy.
* NB: alloc routines never return NULL. They exit to error_exit if not
* successful.
*/
#define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */
#define JPOOL_IMAGE 1 /* lasts until done with image/datastream */
#define JPOOL_NUMPOOLS 2
typedef struct jvirt_sarray_control * jvirt_sarray_ptr;
typedef struct jvirt_barray_control * jvirt_barray_ptr;
struct jpeg_memory_mgr {
/* Method pointers */
JMETHOD(void *, alloc_small, (j_common_ptr cinfo, int pool_id,
size_t sizeofobject));
JMETHOD(void FAR *, alloc_large, (j_common_ptr cinfo, int pool_id,
size_t sizeofobject));
JMETHOD(JSAMPARRAY, alloc_sarray, (j_common_ptr cinfo, int pool_id,
JDIMENSION samplesperrow,
JDIMENSION numrows));
JMETHOD(JBLOCKARRAY, alloc_barray, (j_common_ptr cinfo, int pool_id,
JDIMENSION blocksperrow,
JDIMENSION numrows));
JMETHOD(jvirt_sarray_ptr, request_virt_sarray, (j_common_ptr cinfo,
int pool_id,
boolean pre_zero,
JDIMENSION samplesperrow,
JDIMENSION numrows,
JDIMENSION maxaccess));
JMETHOD(jvirt_barray_ptr, request_virt_barray, (j_common_ptr cinfo,
int pool_id,
boolean pre_zero,
JDIMENSION blocksperrow,
JDIMENSION numrows,
JDIMENSION maxaccess));
JMETHOD(void, realize_virt_arrays, (j_common_ptr cinfo));
JMETHOD(JSAMPARRAY, access_virt_sarray, (j_common_ptr cinfo,
jvirt_sarray_ptr ptr,
JDIMENSION start_row,
JDIMENSION num_rows,
boolean writable));
JMETHOD(JBLOCKARRAY, access_virt_barray, (j_common_ptr cinfo,
jvirt_barray_ptr ptr,
JDIMENSION start_row,
JDIMENSION num_rows,
boolean writable));
JMETHOD(void, free_pool, (j_common_ptr cinfo, int pool_id));
JMETHOD(void, self_destruct, (j_common_ptr cinfo));
/* Limit on memory allocation for this JPEG object. (Note that this is
* merely advisory, not a guaranteed maximum; it only affects the space
* used for virtual-array buffers.) May be changed by outer application
* after creating the JPEG object.
*/
long max_memory_to_use;
/* Maximum allocation request accepted by alloc_large. */
long max_alloc_chunk;
};
/* Routine signature for application-supplied marker processing methods.
* Need not pass marker code since it is stored in cinfo->unread_marker.
*/
typedef JMETHOD(boolean, jpeg_marker_parser_method, (j_decompress_ptr cinfo));
/* Declarations for routines called by application.
* The JPP macro hides prototype parameters from compilers that can't cope.
* Note JPP requires double parentheses.
*/
#ifdef HAVE_PROTOTYPES
#define JPP(arglist) arglist
#else
#define JPP(arglist) ()
#endif
/* Short forms of external names for systems with brain-damaged linkers.
* We shorten external names to be unique in the first six letters, which
* is good enough for all known systems.
* (If your compiler itself needs names to be unique in less than 15
* characters, you are out of luck. Get a better compiler.)
*/
#ifdef NEED_SHORT_EXTERNAL_NAMES
#define jpeg_std_error jStdError
#define jpeg_CreateCompress jCreaCompress
#define jpeg_CreateDecompress jCreaDecompress
#define jpeg_destroy_compress jDestCompress
#define jpeg_destroy_decompress jDestDecompress
#define jpeg_stdio_dest jStdDest
#define jpeg_stdio_src jStdSrc
#define jpeg_set_defaults jSetDefaults
#define jpeg_set_colorspace jSetColorspace
#define jpeg_default_colorspace jDefColorspace
#define jpeg_set_quality jSetQuality
#define jpeg_set_linear_quality jSetLQuality
#define jpeg_add_quant_table jAddQuantTable
#define jpeg_quality_scaling jQualityScaling
#define jpeg_simple_progression jSimProgress
#define jpeg_suppress_tables jSuppressTables
#define jpeg_alloc_quant_table jAlcQTable
#define jpeg_alloc_huff_table jAlcHTable
#define jpeg_start_compress jStrtCompress
#define jpeg_write_scanlines jWrtScanlines
#define jpeg_finish_compress jFinCompress
#define jpeg_write_raw_data jWrtRawData
#define jpeg_write_marker jWrtMarker
#define jpeg_write_m_header jWrtMHeader
#define jpeg_write_m_byte jWrtMByte
#define jpeg_write_tables jWrtTables
#define jpeg_read_header jReadHeader
#define jpeg_start_decompress jStrtDecompress
#define jpeg_read_scanlines jReadScanlines
#define jpeg_finish_decompress jFinDecompress
#define jpeg_read_raw_data jReadRawData
#define jpeg_has_multiple_scans jHasMultScn
#define jpeg_start_output jStrtOutput
#define jpeg_finish_output jFinOutput
#define jpeg_input_complete jInComplete
#define jpeg_new_colormap jNewCMap
#define jpeg_consume_input jConsumeInput
#define jpeg_calc_output_dimensions jCalcDimensions
#define jpeg_save_markers jSaveMarkers
#define jpeg_set_marker_processor jSetMarker
#define jpeg_read_coefficients jReadCoefs
#define jpeg_write_coefficients jWrtCoefs
#define jpeg_copy_critical_parameters jCopyCrit
#define jpeg_abort_compress jAbrtCompress
#define jpeg_abort_decompress jAbrtDecompress
#define jpeg_abort jAbort
#define jpeg_destroy jDestroy
#define jpeg_resync_to_restart jResyncRestart
#endif /* NEED_SHORT_EXTERNAL_NAMES */
/* Default error-management setup */
EXTERN(struct jpeg_error_mgr *) jpeg_std_error
JPP((struct jpeg_error_mgr * err));
/* Initialization of JPEG compression objects.
* jpeg_create_compress() and jpeg_create_decompress() are the exported
* names that applications should call. These expand to calls on
* jpeg_CreateCompress and jpeg_CreateDecompress with additional information
* passed for version mismatch checking.
* NB: you must set up the error-manager BEFORE calling jpeg_create_xxx.
*/
#define jpeg_create_compress(cinfo) \
jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \
(size_t) sizeof(struct jpeg_compress_struct))
#define jpeg_create_decompress(cinfo) \
jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \
(size_t) sizeof(struct jpeg_decompress_struct))
EXTERN(void) jpeg_CreateCompress JPP((j_compress_ptr cinfo,
int version, size_t structsize));
EXTERN(void) jpeg_CreateDecompress JPP((j_decompress_ptr cinfo,
int version, size_t structsize));
/* Destruction of JPEG compression objects */
EXTERN(void) jpeg_destroy_compress JPP((j_compress_ptr cinfo));
EXTERN(void) jpeg_destroy_decompress JPP((j_decompress_ptr cinfo));
/* Standard data source and destination managers: stdio streams. */
/* Caller is responsible for opening the file before and closing after. */
EXTERN(void) jpeg_stdio_dest JPP((j_compress_ptr cinfo, FILE * outfile));
EXTERN(void) jpeg_stdio_src JPP((j_decompress_ptr cinfo, FILE * infile));
/* Default parameter setup for compression */
EXTERN(void) jpeg_set_defaults JPP((j_compress_ptr cinfo));
/* Compression parameter setup aids */
EXTERN(void) jpeg_set_colorspace JPP((j_compress_ptr cinfo,
J_COLOR_SPACE colorspace));
EXTERN(void) jpeg_default_colorspace JPP((j_compress_ptr cinfo));
EXTERN(void) jpeg_set_quality JPP((j_compress_ptr cinfo, int quality,
boolean force_baseline));
EXTERN(void) jpeg_set_linear_quality JPP((j_compress_ptr cinfo,
int scale_factor,
boolean force_baseline));
EXTERN(void) jpeg_add_quant_table JPP((j_compress_ptr cinfo, int which_tbl,
const unsigned int *basic_table,
int scale_factor,
boolean force_baseline));
EXTERN(int) jpeg_quality_scaling JPP((int quality));
EXTERN(void) jpeg_simple_progression JPP((j_compress_ptr cinfo));
EXTERN(void) jpeg_suppress_tables JPP((j_compress_ptr cinfo,
boolean suppress));
EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table JPP((j_common_ptr cinfo));
EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table JPP((j_common_ptr cinfo));
/* Main entry points for compression */
EXTERN(void) jpeg_start_compress JPP((j_compress_ptr cinfo,
boolean write_all_tables));
EXTERN(JDIMENSION) jpeg_write_scanlines JPP((j_compress_ptr cinfo,
JSAMPARRAY scanlines,
JDIMENSION num_lines));
EXTERN(void) jpeg_finish_compress JPP((j_compress_ptr cinfo));
/* Replaces jpeg_write_scanlines when writing raw downsampled data. */
EXTERN(JDIMENSION) jpeg_write_raw_data JPP((j_compress_ptr cinfo,
JSAMPIMAGE data,
JDIMENSION num_lines));
/* Write a special marker. See libjpeg.doc concerning safe usage. */
EXTERN(void) jpeg_write_marker
JPP((j_compress_ptr cinfo, int marker,
const JOCTET * dataptr, unsigned int datalen));
/* Same, but piecemeal. */
EXTERN(void) jpeg_write_m_header
JPP((j_compress_ptr cinfo, int marker, unsigned int datalen));
EXTERN(void) jpeg_write_m_byte
JPP((j_compress_ptr cinfo, int val));
/* Alternate compression function: just write an abbreviated table file */
EXTERN(void) jpeg_write_tables JPP((j_compress_ptr cinfo));
/* Decompression startup: read start of JPEG datastream to see what's there */
EXTERN(int) jpeg_read_header JPP((j_decompress_ptr cinfo,
boolean require_image));
/* Return value is one of: */
#define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */
#define JPEG_HEADER_OK 1 /* Found valid image datastream */
#define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */
/* If you pass require_image = TRUE (normal case), you need not check for
* a TABLES_ONLY return code; an abbreviated file will cause an error exit.
* JPEG_SUSPENDED is only possible if you use a data source module that can
* give a suspension return (the stdio source module doesn't).
*/
/* Main entry points for decompression */
EXTERN(boolean) jpeg_start_decompress JPP((j_decompress_ptr cinfo));
EXTERN(JDIMENSION) jpeg_read_scanlines JPP((j_decompress_ptr cinfo,
JSAMPARRAY scanlines,
JDIMENSION max_lines));
EXTERN(boolean) jpeg_finish_decompress JPP((j_decompress_ptr cinfo));
/* Replaces jpeg_read_scanlines when reading raw downsampled data. */
EXTERN(JDIMENSION) jpeg_read_raw_data JPP((j_decompress_ptr cinfo,
JSAMPIMAGE data,
JDIMENSION max_lines));
/* Additional entry points for buffered-image mode. */
EXTERN(boolean) jpeg_has_multiple_scans JPP((j_decompress_ptr cinfo));
EXTERN(boolean) jpeg_start_output JPP((j_decompress_ptr cinfo,
int scan_number));
EXTERN(boolean) jpeg_finish_output JPP((j_decompress_ptr cinfo));
EXTERN(boolean) jpeg_input_complete JPP((j_decompress_ptr cinfo));
EXTERN(void) jpeg_new_colormap JPP((j_decompress_ptr cinfo));
EXTERN(int) jpeg_consume_input JPP((j_decompress_ptr cinfo));
/* Return value is one of: */
/* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */
#define JPEG_REACHED_SOS 1 /* Reached start of new scan */
#define JPEG_REACHED_EOI 2 /* Reached end of image */
#define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */
#define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */
/* Precalculate output dimensions for current decompression parameters. */
EXTERN(void) jpeg_calc_output_dimensions JPP((j_decompress_ptr cinfo));
/* Control saving of COM and APPn markers into marker_list. */
EXTERN(void) jpeg_save_markers
JPP((j_decompress_ptr cinfo, int marker_code,
unsigned int length_limit));
/* Install a special processing method for COM or APPn markers. */
EXTERN(void) jpeg_set_marker_processor
JPP((j_decompress_ptr cinfo, int marker_code,
jpeg_marker_parser_method routine));
/* Read or write raw DCT coefficients --- useful for lossless transcoding. */
EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients JPP((j_decompress_ptr cinfo));
EXTERN(void) jpeg_write_coefficients JPP((j_compress_ptr cinfo,
jvirt_barray_ptr * coef_arrays));
EXTERN(void) jpeg_copy_critical_parameters JPP((j_decompress_ptr srcinfo,
j_compress_ptr dstinfo));
/* If you choose to abort compression or decompression before completing
* jpeg_finish_(de)compress, then you need to clean up to release memory,
* temporary files, etc. You can just call jpeg_destroy_(de)compress
* if you're done with the JPEG object, but if you want to clean it up and
* reuse it, call this:
*/
EXTERN(void) jpeg_abort_compress JPP((j_compress_ptr cinfo));
EXTERN(void) jpeg_abort_decompress JPP((j_decompress_ptr cinfo));
/* Generic versions of jpeg_abort and jpeg_destroy that work on either
* flavor of JPEG object. These may be more convenient in some places.
*/
EXTERN(void) jpeg_abort JPP((j_common_ptr cinfo));
EXTERN(void) jpeg_destroy JPP((j_common_ptr cinfo));
/* Default restart-marker-resync procedure for use by data source modules */
EXTERN(boolean) jpeg_resync_to_restart JPP((j_decompress_ptr cinfo,
int desired));
/* These marker codes are exported since applications and data source modules
* are likely to want to use them.
*/
#define JPEG_RST0 0xD0 /* RST0 marker code */
#define JPEG_EOI 0xD9 /* EOI marker code */
#define JPEG_APP0 0xE0 /* APP0 marker code */
#define JPEG_COM 0xFE /* COM marker code */
/* If we have a brain-damaged compiler that emits warnings (or worse, errors)
* for structure definitions that are never filled in, keep it quiet by
* supplying dummy definitions for the various substructures.
*/
#ifdef INCOMPLETE_TYPES_BROKEN
#ifndef JPEG_INTERNALS /* will be defined in jpegint.h */
struct jvirt_sarray_control { long dummy; };
struct jvirt_barray_control { long dummy; };
struct jpeg_comp_master { long dummy; };
struct jpeg_c_main_controller { long dummy; };
struct jpeg_c_prep_controller { long dummy; };
struct jpeg_c_coef_controller { long dummy; };
struct jpeg_marker_writer { long dummy; };
struct jpeg_color_converter { long dummy; };
struct jpeg_downsampler { long dummy; };
struct jpeg_forward_dct { long dummy; };
struct jpeg_entropy_encoder { long dummy; };
struct jpeg_decomp_master { long dummy; };
struct jpeg_d_main_controller { long dummy; };
struct jpeg_d_coef_controller { long dummy; };
struct jpeg_d_post_controller { long dummy; };
struct jpeg_input_controller { long dummy; };
struct jpeg_marker_reader { long dummy; };
struct jpeg_entropy_decoder { long dummy; };
struct jpeg_inverse_dct { long dummy; };
struct jpeg_upsampler { long dummy; };
struct jpeg_color_deconverter { long dummy; };
struct jpeg_color_quantizer { long dummy; };
#endif /* JPEG_INTERNALS */
#endif /* INCOMPLETE_TYPES_BROKEN */
/*
* The JPEG library modules define JPEG_INTERNALS before including this file.
* The internal structure declarations are read only when that is true.
* Applications using the library should not include jpegint.h, but may wish
* to include jerror.h.
*/
#ifdef JPEG_INTERNALS
#include "jpegint.h" /* fetch private declarations */
#include "jerror.h" /* fetch error codes too */
#endif
#endif /* JPEGLIB_H */
/*
* jquant1.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains 1-pass color quantization (color mapping) routines.
* These routines provide mapping to a fixed color map using equally spaced
* color values. Optional Floyd-Steinberg or ordered dithering is available.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#ifdef QUANT_1PASS_SUPPORTED
/*
* The main purpose of 1-pass quantization is to provide a fast, if not very
* high quality, colormapped output capability. A 2-pass quantizer usually
* gives better visual quality; however, for quantized grayscale output this
* quantizer is perfectly adequate. Dithering is highly recommended with this
* quantizer, though you can turn it off if you really want to.
*
* In 1-pass quantization the colormap must be chosen in advance of seeing the
* image. We use a map consisting of all combinations of Ncolors[i] color
* values for the i'th component. The Ncolors[] values are chosen so that
* their product, the total number of colors, is no more than that requested.
* (In most cases, the product will be somewhat less.)
*
* Since the colormap is orthogonal, the representative value for each color
* component can be determined without considering the other components;
* then these indexes can be combined into a colormap index by a standard
* N-dimensional-array-subscript calculation. Most of the arithmetic involved
* can be precalculated and stored in the lookup table colorindex[].
* colorindex[i][j] maps pixel value j in component i to the nearest
* representative value (grid plane) for that component; this index is
* multiplied by the array stride for component i, so that the
* index of the colormap entry closest to a given pixel value is just
* sum( colorindex[component-number][pixel-component-value] )
* Aside from being fast, this scheme allows for variable spacing between
* representative values with no additional lookup cost.
*
* If gamma correction has been applied in color conversion, it might be wise
* to adjust the color grid spacing so that the representative colors are
* equidistant in linear space. At this writing, gamma correction is not
* implemented by jdcolor, so nothing is done here.
*/
/* Declarations for ordered dithering.
*
* We use a standard 16x16 ordered dither array. The basic concept of ordered
* dithering is described in many references, for instance Dale Schumacher's
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
* In place of Schumacher's comparisons against a "threshold" value, we add a
* "dither" value to the input pixel and then round the result to the nearest
* output value. The dither value is equivalent to (0.5 - threshold) times
* the distance between output values. For ordered dithering, we assume that
* the output colors are equally spaced; if not, results will probably be
* worse, since the dither may be too much or too little at a given point.
*
* The normal calculation would be to form pixel value + dither, range-limit
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
* We can skip the separate range-limiting step by extending the colorindex
* table in both directions.
*/
#define ODITHER_SIZE 16 /* dimension of dither matrix */
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
/* Bayer's order-4 dither array. Generated by the code given in
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
* The values in this array must range from 0 to ODITHER_CELLS-1.
*/
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 },
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 },
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 },
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 },
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
};
/* Declarations for Floyd-Steinberg dithering.
*
* Errors are accumulated into the array fserrors[], at a resolution of
* 1/16th of a pixel count. The error at a given pixel is propagated
* to its not-yet-processed neighbors using the standard F-S fractions,
* ... (here) 7/16
* 3/16 5/16 1/16
* We work left-to-right on even rows, right-to-left on odd rows.
*
* We can get away with a single array (holding one row's worth of errors)
* by using it to store the current row's errors at pixel columns not yet
* processed, but the next row's errors at columns already processed. We
* need only a few extra variables to hold the errors immediately around the
* current column. (If we are lucky, those variables are in registers, but
* even if not, they're probably cheaper to access than array elements are.)
*
* The fserrors[] array is indexed [component#][position].
* We provide (#columns + 2) entries per component; the extra entry at each
* end saves us from special-casing the first and last pixels.
*
* Note: on a wide image, we might not have enough room in a PC's near data
* segment to hold the error array; so it is allocated with alloc_large.
*/
#if BITS_IN_JSAMPLE == 8
typedef INT16 FSERROR; /* 16 bits should be enough */
typedef int LOCFSERROR; /* use 'int' for calculation temps */
#else
typedef INT32 FSERROR; /* may need more than 16 bits */
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
#endif
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
/* Private subobject */
#define MAX_Q_COMPS 4 /* max components I can handle */
typedef struct {
struct jpeg_color_quantizer pub; /* public fields */
/* Initially allocated colormap is saved here */
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */
int sv_actual; /* number of entries in use */
JSAMPARRAY colorindex; /* Precomputed mapping for speed */
/* colorindex[i][j] = index of color closest to pixel value j in component i,
* premultiplied as described above. Since colormap indexes must fit into
* JSAMPLEs, the entries of this array will too.
*/
boolean is_padded; /* is the colorindex padded for odither? */
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */
/* Variables for ordered dithering */
int row_index; /* cur row's vertical index in dither matrix */
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
/* Variables for Floyd-Steinberg dithering */
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
boolean on_odd_row; /* flag to remember which row we are on */
} my_cquantizer;
typedef my_cquantizer * my_cquantize_ptr;
/*
* Policy-making subroutines for create_colormap and create_colorindex.
* These routines determine the colormap to be used. The rest of the module
* only assumes that the colormap is orthogonal.
*
* * select_ncolors decides how to divvy up the available colors
* among the components.
* * output_value defines the set of representative values for a component.
* * largest_input_value defines the mapping from input values to
* representative values for a component.
* Note that the latter two routines may impose different policies for
* different components, though this is not currently done.
*/
LOCAL(int)
select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
/* Determine allocation of desired colors to components, */
/* and fill in Ncolors[] array to indicate choice. */
/* Return value is total number of colors (product of Ncolors[] values). */
{
int nc = cinfo->out_color_components; /* number of color components */
int max_colors = cinfo->desired_number_of_colors;
int total_colors, iroot, i, j;
boolean changed;
long temp;
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
/* We can allocate at least the nc'th root of max_colors per component. */
/* Compute floor(nc'th root of max_colors). */
iroot = 1;
do {
iroot++;
temp = iroot; /* set temp = iroot ** nc */
for (i = 1; i < nc; i++)
temp *= iroot;
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
iroot--; /* now iroot = floor(root) */
/* Must have at least 2 color values per component */
if (iroot < 2)
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
/* Initialize to iroot color values for each component */
total_colors = 1;
for (i = 0; i < nc; i++) {
Ncolors[i] = iroot;
total_colors *= iroot;
}
/* We may be able to increment the count for one or more components without
* exceeding max_colors, though we know not all can be incremented.
* Sometimes, the first component can be incremented more than once!
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
* In RGB colorspace, try to increment G first, then R, then B.
*/
do {
changed = FALSE;
for (i = 0; i < nc; i++) {
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
/* calculate new total_colors if Ncolors[j] is incremented */
temp = total_colors / Ncolors[j];
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */
if (temp > (long) max_colors)
break; /* won't fit, done with this pass */
Ncolors[j]++; /* OK, apply the increment */
total_colors = (int) temp;
changed = TRUE;
}
} while (changed);
return total_colors;
}
LOCAL(int)
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
/* Return j'th output value, where j will range from 0 to maxj */
/* The output values must fall in 0..MAXJSAMPLE in increasing order */
{
/* We always provide values 0 and MAXJSAMPLE for each component;
* any additional values are equally spaced between these limits.
* (Forcing the upper and lower values to the limits ensures that
* dithering can't produce a color outside the selected gamut.)
*/
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
}
LOCAL(int)
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
/* Return largest input value that should map to j'th output value */
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
{
/* Breakpoints are halfway between values returned by output_value */
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
}
/*
* Create the colormap.
*/
LOCAL(void)
create_colormap (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
JSAMPARRAY colormap; /* Created colormap */
int total_colors; /* Number of distinct output colors */
int i,j,k, nci, blksize, blkdist, ptr, val;
/* Select number of colors for each component */
total_colors = select_ncolors(cinfo, cquantize->Ncolors);
/* Report selected color counts */
if (cinfo->out_color_components == 3)
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
total_colors, cquantize->Ncolors[0],
cquantize->Ncolors[1], cquantize->Ncolors[2]);
else
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
/* Allocate and fill in the colormap. */
/* The colors are ordered in the map in standard row-major order, */
/* i.e. rightmost (highest-indexed) color changes most rapidly. */
colormap = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
/* blksize is number of adjacent repeated entries for a component */
/* blkdist is distance between groups of identical entries for a component */
blkdist = total_colors;
for (i = 0; i < cinfo->out_color_components; i++) {
/* fill in colormap entries for i'th color component */
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
blksize = blkdist / nci;
for (j = 0; j < nci; j++) {
/* Compute j'th output value (out of nci) for component */
val = output_value(cinfo, i, j, nci-1);
/* Fill in all colormap entries that have this value of this component */
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
/* fill in blksize entries beginning at ptr */
for (k = 0; k < blksize; k++)
colormap[i][ptr+k] = (JSAMPLE) val;
}
}
blkdist = blksize; /* blksize of this color is blkdist of next */
}
/* Save the colormap in private storage,
* where it will survive color quantization mode changes.
*/
cquantize->sv_colormap = colormap;
cquantize->sv_actual = total_colors;
}
/*
* Create the color index table.
*/
LOCAL(void)
create_colorindex (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
JSAMPROW indexptr;
int i,j,k, nci, blksize, val, pad;
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
* This is not necessary in the other dithering modes. However, we
* flag whether it was done in case user changes dithering mode.
*/
if (cinfo->dither_mode == JDITHER_ORDERED) {
pad = MAXJSAMPLE*2;
cquantize->is_padded = TRUE;
} else {
pad = 0;
cquantize->is_padded = FALSE;
}
cquantize->colorindex = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(JDIMENSION) (MAXJSAMPLE+1 + pad),
(JDIMENSION) cinfo->out_color_components);
/* blksize is number of adjacent repeated entries for a component */
blksize = cquantize->sv_actual;
for (i = 0; i < cinfo->out_color_components; i++) {
/* fill in colorindex entries for i'th color component */
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
blksize = blksize / nci;
/* adjust colorindex pointers to provide padding at negative indexes. */
if (pad)
cquantize->colorindex[i] += MAXJSAMPLE;
/* in loop, val = index of current output value, */
/* and k = largest j that maps to current val */
indexptr = cquantize->colorindex[i];
val = 0;
k = largest_input_value(cinfo, i, 0, nci-1);
for (j = 0; j <= MAXJSAMPLE; j++) {
while (j > k) /* advance val if past boundary */
k = largest_input_value(cinfo, i, ++val, nci-1);
/* premultiply so that no multiplication needed in main processing */
indexptr[j] = (JSAMPLE) (val * blksize);
}
/* Pad at both ends if necessary */
if (pad)
for (j = 1; j <= MAXJSAMPLE; j++) {
indexptr[-j] = indexptr[0];
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
}
}
}
/*
* Create an ordered-dither array for a component having ncolors
* distinct output values.
*/
LOCAL(ODITHER_MATRIX_PTR)
make_odither_array (j_decompress_ptr cinfo, int ncolors)
{
ODITHER_MATRIX_PTR odither;
int j,k;
INT32 num,den;
odither = (ODITHER_MATRIX_PTR)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(ODITHER_MATRIX));
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
* Hence the dither value for the matrix cell with fill order f
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
* On 16-bit-int machine, be careful to avoid overflow.
*/
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
for (j = 0; j < ODITHER_SIZE; j++) {
for (k = 0; k < ODITHER_SIZE; k++) {
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
* MAXJSAMPLE;
/* Ensure round towards zero despite C's lack of consistency
* about rounding negative values in integer division...
*/
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
}
}
return odither;
}
/*
* Create the ordered-dither tables.
* Components having the same number of representative colors may
* share a dither table.
*/
LOCAL(void)
create_odither_tables (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
ODITHER_MATRIX_PTR odither;
int i, j, nci;
for (i = 0; i < cinfo->out_color_components; i++) {
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
odither = NULL; /* search for matching prior component */
for (j = 0; j < i; j++) {
if (nci == cquantize->Ncolors[j]) {
odither = cquantize->odither[j];
break;
}
}
if (odither == NULL) /* need a new table? */
odither = make_odither_array(cinfo, nci);
cquantize->odither[i] = odither;
}
}
/*
* Map some rows of pixels to the output colormapped representation.
*/
METHODDEF(void)
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* General case, no dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
JSAMPARRAY colorindex = cquantize->colorindex;
register int pixcode, ci;
register JSAMPROW ptrin, ptrout;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
register int nc = cinfo->out_color_components;
for (row = 0; row < num_rows; row++) {
ptrin = input_buf[row];
ptrout = output_buf[row];
for (col = width; col > 0; col--) {
pixcode = 0;
for (ci = 0; ci < nc; ci++) {
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
}
*ptrout++ = (JSAMPLE) pixcode;
}
}
}
METHODDEF(void)
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* Fast path for out_color_components==3, no dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register int pixcode;
register JSAMPROW ptrin, ptrout;
JSAMPROW colorindex0 = cquantize->colorindex[0];
JSAMPROW colorindex1 = cquantize->colorindex[1];
JSAMPROW colorindex2 = cquantize->colorindex[2];
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
ptrin = input_buf[row];
ptrout = output_buf[row];
for (col = width; col > 0; col--) {
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
*ptrout++ = (JSAMPLE) pixcode;
}
}
}
METHODDEF(void)
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* General case, with ordered dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register JSAMPROW input_ptr;
register JSAMPROW output_ptr;
JSAMPROW colorindex_ci;
int * dither; /* points to active row of dither matrix */
int row_index, col_index; /* current indexes into dither matrix */
int nc = cinfo->out_color_components;
int ci;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
/* Initialize output values to 0 so can process components separately */
jzero_far((void FAR *) output_buf[row],
(size_t) (width * SIZEOF(JSAMPLE)));
row_index = cquantize->row_index;
for (ci = 0; ci < nc; ci++) {
input_ptr = input_buf[row] + ci;
output_ptr = output_buf[row];
colorindex_ci = cquantize->colorindex[ci];
dither = cquantize->odither[ci][row_index];
col_index = 0;
for (col = width; col > 0; col--) {
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
* select output value, accumulate into output code for this pixel.
* Range-limiting need not be done explicitly, as we have extended
* the colorindex table to produce the right answers for out-of-range
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the
* required amount of padding.
*/
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
input_ptr += nc;
output_ptr++;
col_index = (col_index + 1) & ODITHER_MASK;
}
}
/* Advance row index for next row */
row_index = (row_index + 1) & ODITHER_MASK;
cquantize->row_index = row_index;
}
}
METHODDEF(void)
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* Fast path for out_color_components==3, with ordered dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register int pixcode;
register JSAMPROW input_ptr;
register JSAMPROW output_ptr;
JSAMPROW colorindex0 = cquantize->colorindex[0];
JSAMPROW colorindex1 = cquantize->colorindex[1];
JSAMPROW colorindex2 = cquantize->colorindex[2];
int * dither0; /* points to active row of dither matrix */
int * dither1;
int * dither2;
int row_index, col_index; /* current indexes into dither matrix */
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
row_index = cquantize->row_index;
input_ptr = input_buf[row];
output_ptr = output_buf[row];
dither0 = cquantize->odither[0][row_index];
dither1 = cquantize->odither[1][row_index];
dither2 = cquantize->odither[2][row_index];
col_index = 0;
for (col = width; col > 0; col--) {
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
dither0[col_index]]);
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
dither1[col_index]]);
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
dither2[col_index]]);
*output_ptr++ = (JSAMPLE) pixcode;
col_index = (col_index + 1) & ODITHER_MASK;
}
row_index = (row_index + 1) & ODITHER_MASK;
cquantize->row_index = row_index;
}
}
METHODDEF(void)
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
/* General case, with Floyd-Steinberg dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register LOCFSERROR cur; /* current error or pixel value */
LOCFSERROR belowerr; /* error for pixel below cur */
LOCFSERROR bpreverr; /* error for below/prev col */
LOCFSERROR bnexterr; /* error for below/next col */
LOCFSERROR delta;
register FSERRPTR errorptr; /* => fserrors[] at column before current */
register JSAMPROW input_ptr;
register JSAMPROW output_ptr;
JSAMPROW colorindex_ci;
JSAMPROW colormap_ci;
int pixcode;
int nc = cinfo->out_color_components;
int dir; /* 1 for left-to-right, -1 for right-to-left */
int dirnc; /* dir * nc */
int ci;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
JSAMPLE *range_limit = cinfo->sample_range_limit;
SHIFT_TEMPS
for (row = 0; row < num_rows; row++) {
/* Initialize output values to 0 so can process components separately */
jzero_far((void FAR *) output_buf[row],
(size_t) (width * SIZEOF(JSAMPLE)));
for (ci = 0; ci < nc; ci++) {
input_ptr = input_buf[row] + ci;
output_ptr = output_buf[row];
if (cquantize->on_odd_row) {
/* work right to left in this row */
input_ptr += (width-1) * nc; /* so point to rightmost pixel */
output_ptr += width-1;
dir = -1;
dirnc = -nc;
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
} else {
/* work left to right in this row */
dir = 1;
dirnc = nc;
errorptr = cquantize->fserrors[ci]; /* => entry before first column */
}
colorindex_ci = cquantize->colorindex[ci];
colormap_ci = cquantize->sv_colormap[ci];
/* Preset error values: no error propagated to first pixel from left */
cur = 0;
/* and no error propagated to row below yet */
belowerr = bpreverr = 0;
for (col = width; col > 0; col--) {
/* cur holds the error propagated from the previous pixel on the
* current line. Add the error propagated from the previous line
* to form the complete error correction term for this pixel, and
* round the error term (which is expressed * 16) to an integer.
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
* for either sign of the error value.
* Note: errorptr points to *previous* column's array entry.
*/
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
* The maximum error is +- MAXJSAMPLE; this sets the required size
* of the range_limit array.
*/
cur += GETJSAMPLE(*input_ptr);
cur = GETJSAMPLE(range_limit[cur]);
/* Select output value, accumulate into output code for this pixel */
pixcode = GETJSAMPLE(colorindex_ci[cur]);
*output_ptr += (JSAMPLE) pixcode;
/* Compute actual representation error at this pixel */
/* Note: we can do this even though we don't have the final */
/* pixel code, because the colormap is orthogonal. */
cur -= GETJSAMPLE(colormap_ci[pixcode]);
/* Compute error fractions to be propagated to adjacent pixels.
* Add these into the running sums, and simultaneously shift the
* next-line error sums left by 1 column.
*/
bnexterr = cur;
delta = cur * 2;
cur += delta; /* form error * 3 */
errorptr[0] = (FSERROR) (bpreverr + cur);
cur += delta; /* form error * 5 */
bpreverr = belowerr + cur;
belowerr = bnexterr;
cur += delta; /* form error * 7 */
/* At this point cur contains the 7/16 error value to be propagated
* to the next pixel on the current line, and all the errors for the
* next line have been shifted over. We are therefore ready to move on.
*/
input_ptr += dirnc; /* advance input ptr to next column */
output_ptr += dir; /* advance output ptr to next column */
errorptr += dir; /* advance errorptr to current column */
}
/* Post-loop cleanup: we must unload the final error value into the
* final fserrors[] entry. Note we need not unload belowerr because
* it is for the dummy column before or after the actual array.
*/
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
}
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
}
}
/*
* Allocate workspace for Floyd-Steinberg errors.
*/
LOCAL(void)
alloc_fs_workspace (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
size_t arraysize;
int i;
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
for (i = 0; i < cinfo->out_color_components; i++) {
cquantize->fserrors[i] = (FSERRPTR)
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
}
}
/*
* Initialize for one-pass color quantization.
*/
METHODDEF(void)
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
size_t arraysize;
int i;
/* Install my colormap. */
cinfo->colormap = cquantize->sv_colormap;
cinfo->actual_number_of_colors = cquantize->sv_actual;
/* Initialize for desired dithering mode. */
switch (cinfo->dither_mode) {
case JDITHER_NONE:
if (cinfo->out_color_components == 3)
cquantize->pub.color_quantize = color_quantize3;
else
cquantize->pub.color_quantize = color_quantize;
break;
case JDITHER_ORDERED:
if (cinfo->out_color_components == 3)
cquantize->pub.color_quantize = quantize3_ord_dither;
else
cquantize->pub.color_quantize = quantize_ord_dither;
cquantize->row_index = 0; /* initialize state for ordered dither */
/* If user changed to ordered dither from another mode,
* we must recreate the color index table with padding.
* This will cost extra space, but probably isn't very likely.
*/
if (! cquantize->is_padded)
create_colorindex(cinfo);
/* Create ordered-dither tables if we didn't already. */
if (cquantize->odither[0] == NULL)
create_odither_tables(cinfo);
break;
case JDITHER_FS:
cquantize->pub.color_quantize = quantize_fs_dither;
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
/* Allocate Floyd-Steinberg workspace if didn't already. */
if (cquantize->fserrors[0] == NULL)
alloc_fs_workspace(cinfo);
/* Initialize the propagated errors to zero. */
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
for (i = 0; i < cinfo->out_color_components; i++)
jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
break;
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
/*
* Finish up at the end of the pass.
*/
METHODDEF(void)
finish_pass_1_quant (j_decompress_ptr cinfo)
{
/* no work in 1-pass case */
}
/*
* Switch to a new external colormap between output passes.
* Shouldn't get to this module!
*/
METHODDEF(void)
new_color_map_1_quant (j_decompress_ptr cinfo)
{
ERREXIT(cinfo, JERR_MODE_CHANGE);
}
/*
* Module initialization routine for 1-pass color quantization.
*/
GLOBAL(void)
jinit_1pass_quantizer (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize;
cquantize = (my_cquantize_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_cquantizer));
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
cquantize->pub.start_pass = start_pass_1_quant;
cquantize->pub.finish_pass = finish_pass_1_quant;
cquantize->pub.new_color_map = new_color_map_1_quant;
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
/* Make sure my internal arrays won't overflow */
if (cinfo->out_color_components > MAX_Q_COMPS)
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
/* Make sure colormap indexes can be represented by JSAMPLEs */
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
/* Create the colormap and color index table. */
create_colormap(cinfo);
create_colorindex(cinfo);
/* Allocate Floyd-Steinberg workspace now if requested.
* We do this now since it is FAR storage and may affect the memory
* manager's space calculations. If the user changes to FS dither
* mode in a later pass, we will allocate the space then, and will
* possibly overrun the max_memory_to_use setting.
*/
if (cinfo->dither_mode == JDITHER_FS)
alloc_fs_workspace(cinfo);
}
#endif /* QUANT_1PASS_SUPPORTED */
/*
* jquant2.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains 2-pass color quantization (color mapping) routines.
* These routines provide selection of a custom color map for an image,
* followed by mapping of the image to that color map, with optional
* Floyd-Steinberg dithering.
* It is also possible to use just the second pass to map to an arbitrary
* externally-given color map.
*
* Note: ordered dithering is not supported, since there isn't any fast
* way to compute intercolor distances; it's unclear that ordered dither's
* fundamental assumptions even hold with an irregularly spaced color map.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#ifdef QUANT_2PASS_SUPPORTED
/*
* This module implements the well-known Heckbert paradigm for color
* quantization. Most of the ideas used here can be traced back to
* Heckbert's seminal paper
* Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
* Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
*
* In the first pass over the image, we accumulate a histogram showing the
* usage count of each possible color. To keep the histogram to a reasonable
* size, we reduce the precision of the input; typical practice is to retain
* 5 or 6 bits per color, so that 8 or 4 different input values are counted
* in the same histogram cell.
*
* Next, the color-selection step begins with a box representing the whole
* color space, and repeatedly splits the "largest" remaining box until we
* have as many boxes as desired colors. Then the mean color in each
* remaining box becomes one of the possible output colors.
*
* The second pass over the image maps each input pixel to the closest output
* color (optionally after applying a Floyd-Steinberg dithering correction).
* This mapping is logically trivial, but making it go fast enough requires
* considerable care.
*
* Heckbert-style quantizers vary a good deal in their policies for choosing
* the "largest" box and deciding where to cut it. The particular policies
* used here have proved out well in experimental comparisons, but better ones
* may yet be found.
*
* In earlier versions of the IJG code, this module quantized in YCbCr color
* space, processing the raw upsampled data without a color conversion step.
* This allowed the color conversion math to be done only once per colormap
* entry, not once per pixel. However, that optimization precluded other
* useful optimizations (such as merging color conversion with upsampling)
* and it also interfered with desired capabilities such as quantizing to an
* externally-supplied colormap. We have therefore abandoned that approach.
* The present code works in the post-conversion color space, typically RGB.
*
* To improve the visual quality of the results, we actually work in scaled
* RGB space, giving G distances more weight than R, and R in turn more than
* B. To do everything in integer math, we must use integer scale factors.
* The 2/3/1 scale factors used here correspond loosely to the relative
* weights of the colors in the NTSC grayscale equation.
* If you want to use this code to quantize a non-RGB color space, you'll
* probably need to change these scale factors.
*/
#define R_SCALE 2 /* scale R distances by this much */
#define G_SCALE 3 /* scale G distances by this much */
#define B_SCALE 1 /* and B by this much */
/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
* in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
* and B,G,R orders. If you define some other weird order in jmorecfg.h,
* you'll get compile errors until you extend this logic. In that case
* you'll probably want to tweak the histogram sizes too.
*/
#if RGB_RED == 0
#define C0_SCALE R_SCALE
#endif
#if RGB_BLUE == 0
#define C0_SCALE B_SCALE
#endif
#if RGB_GREEN == 1
#define C1_SCALE G_SCALE
#endif
#if RGB_RED == 2
#define C2_SCALE R_SCALE
#endif
#if RGB_BLUE == 2
#define C2_SCALE B_SCALE
#endif
/*
* First we have the histogram data structure and routines for creating it.
*
* The number of bits of precision can be adjusted by changing these symbols.
* We recommend keeping 6 bits for G and 5 each for R and B.
* If you have plenty of memory and cycles, 6 bits all around gives marginally
* better results; if you are short of memory, 5 bits all around will save
* some space but degrade the results.
* To maintain a fully accurate histogram, we'd need to allocate a "long"
* (preferably unsigned long) for each cell. In practice this is overkill;
* we can get by with 16 bits per cell. Few of the cell counts will overflow,
* and clamping those that do overflow to the maximum value will give close-
* enough results. This reduces the recommended histogram size from 256Kb
* to 128Kb, which is a useful savings on PC-class machines.
* (In the second pass the histogram space is re-used for pixel mapping data;
* in that capacity, each cell must be able to store zero to the number of
* desired colors. 16 bits/cell is plenty for that too.)
* Since the JPEG code is intended to run in small memory model on 80x86
* machines, we can't just allocate the histogram in one chunk. Instead
* of a true 3-D array, we use a row of pointers to 2-D arrays. Each
* pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
* each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
* on 80x86 machines, the pointer row is in near memory but the actual
* arrays are in far memory (same arrangement as we use for image arrays).
*/
#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
/* These will do the right thing for either R,G,B or B,G,R color order,
* but you may not like the results for other color orders.
*/
#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
#define HIST_C1_BITS 6 /* bits of precision in G histogram */
#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
/* Number of elements along histogram axes. */
#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
/* These are the amounts to shift an input value to get a histogram index. */
#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
typedef histcell FAR * histptr; /* for pointers to histogram cells */
typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */
typedef hist2d * hist3d; /* type for top-level pointer */
/* Declarations for Floyd-Steinberg dithering.
*
* Errors are accumulated into the array fserrors[], at a resolution of
* 1/16th of a pixel count. The error at a given pixel is propagated
* to its not-yet-processed neighbors using the standard F-S fractions,
* ... (here) 7/16
* 3/16 5/16 1/16
* We work left-to-right on even rows, right-to-left on odd rows.
*
* We can get away with a single array (holding one row's worth of errors)
* by using it to store the current row's errors at pixel columns not yet
* processed, but the next row's errors at columns already processed. We
* need only a few extra variables to hold the errors immediately around the
* current column. (If we are lucky, those variables are in registers, but
* even if not, they're probably cheaper to access than array elements are.)
*
* The fserrors[] array has (#columns + 2) entries; the extra entry at
* each end saves us from special-casing the first and last pixels.
* Each entry is three values long, one value for each color component.
*
* Note: on a wide image, we might not have enough room in a PC's near data
* segment to hold the error array; so it is allocated with alloc_large.
*/
#if BITS_IN_JSAMPLE == 8
typedef INT16 FSERROR; /* 16 bits should be enough */
typedef int LOCFSERROR; /* use 'int' for calculation temps */
#else
typedef INT32 FSERROR; /* may need more than 16 bits */
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
#endif
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
/* Private subobject */
typedef struct {
struct jpeg_color_quantizer pub; /* public fields */
/* Space for the eventually created colormap is stashed here */
JSAMPARRAY sv_colormap; /* colormap allocated at init time */
int desired; /* desired # of colors = size of colormap */
/* Variables for accumulating image statistics */
hist3d histogram; /* pointer to the histogram */
boolean needs_zeroed; /* TRUE if next pass must zero histogram */
/* Variables for Floyd-Steinberg dithering */
FSERRPTR fserrors; /* accumulated errors */
boolean on_odd_row; /* flag to remember which row we are on */
int * error_limiter; /* table for clamping the applied error */
} my_cquantizer;
typedef my_cquantizer * my_cquantize_ptr;
/*
* Prescan some rows of pixels.
* In this module the prescan simply updates the histogram, which has been
* initialized to zeroes by start_pass.
* An output_buf parameter is required by the method signature, but no data
* is actually output (in fact the buffer controller is probably passing a
* NULL pointer).
*/
METHODDEF(void)
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
JSAMPARRAY output_buf, int num_rows)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
register JSAMPROW ptr;
register histptr histp;
register hist3d histogram = cquantize->histogram;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
ptr = input_buf[row];
for (col = width; col > 0; col--) {
/* get pixel value and index into the histogram */
histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
[GETJSAMPLE(ptr[1]) >> C1_SHIFT]
[GETJSAMPLE(ptr[2]) >> C2_SHIFT];
/* increment, check for overflow and undo increment if so. */
if (++(*histp) <= 0)
(*histp)--;
ptr += 3;
}
}
}
/*
* Next we have the really interesting routines: selection of a colormap
* given the completed histogram.
* These routines work with a list of "boxes", each representing a rectangular
* subset of the input color space (to histogram precision).
*/
typedef struct {
/* The bounds of the box (inclusive); expressed as histogram indexes */
int c0min, c0max;
int c1min, c1max;
int c2min, c2max;
/* The volume (actually 2-norm) of the box */
INT32 volume;
/* The number of nonzero histogram cells within this box */
long colorcount;
} box;
typedef box * boxptr;
LOCAL(boxptr)
find_biggest_color_pop (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
register boxptr boxp;
register int i;
register long maxc = 0;
boxptr which = NULL;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
if (boxp->colorcount > maxc && boxp->volume > 0) {
which = boxp;
maxc = boxp->colorcount;
}
}
return which;
}
LOCAL(boxptr)
find_biggest_volume (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
register boxptr boxp;
register int i;
register INT32 maxv = 0;
boxptr which = NULL;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
if (boxp->volume > maxv) {
which = boxp;
maxv = boxp->volume;
}
}
return which;
}
LOCAL(void)
update_box (j_decompress_ptr cinfo, boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its volume and population */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
histptr histp;
int c0,c1,c2;
int c0min,c0max,c1min,c1max,c2min,c2max;
INT32 dist0,dist1,dist2;
long ccount;
c0min = boxp->c0min; c0max = boxp->c0max;
c1min = boxp->c1min; c1max = boxp->c1max;
c2min = boxp->c2min; c2max = boxp->c2max;
if (c0max > c0min)
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c0min = c0min = c0;
goto have_c0min;
}
}
have_c0min:
if (c0max > c0min)
for (c0 = c0max; c0 >= c0min; c0--)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c0max = c0max = c0;
goto have_c0max;
}
}
have_c0max:
if (c1max > c1min)
for (c1 = c1min; c1 <= c1max; c1++)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c1min = c1min = c1;
goto have_c1min;
}
}
have_c1min:
if (c1max > c1min)
for (c1 = c1max; c1 >= c1min; c1--)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c1max = c1max = c1;
goto have_c1max;
}
}
have_c1max:
if (c2max > c2min)
for (c2 = c2min; c2 <= c2max; c2++)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1min][c2];
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
if (*histp != 0) {
boxp->c2min = c2min = c2;
goto have_c2min;
}
}
have_c2min:
if (c2max > c2min)
for (c2 = c2max; c2 >= c2min; c2--)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1min][c2];
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
if (*histp != 0) {
boxp->c2max = c2max = c2;
goto have_c2max;
}
}
have_c2max:
/* Update box volume.
* We use 2-norm rather than real volume here; this biases the method
* against making long narrow boxes, and it has the side benefit that
* a box is splittable iff norm > 0.
* Since the differences are expressed in histogram-cell units,
* we have to shift back to JSAMPLE units to get consistent distances;
* after which, we scale according to the selected distance scale factors.
*/
dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
/* Now scan remaining volume of box and compute population */
ccount = 0;
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++, histp++)
if (*histp != 0) {
ccount++;
}
}
boxp->colorcount = ccount;
}
LOCAL(int)
median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
int n,lb;
int c0,c1,c2,cmax;
register boxptr b1,b2;
while (numboxes < desired_colors) {
/* Select box to split.
* Current algorithm: by population for first half, then by volume.
*/
if (numboxes*2 <= desired_colors) {
b1 = find_biggest_color_pop(boxlist, numboxes);
} else {
b1 = find_biggest_volume(boxlist, numboxes);
}
if (b1 == NULL) /* no splittable boxes left! */
break;
b2 = &boxlist[numboxes]; /* where new box will go */
/* Copy the color bounds to the new box. */
b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
/* Choose which axis to split the box on.
* Current algorithm: longest scaled axis.
* See notes in update_box about scaling distances.
*/
c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
/* We want to break any ties in favor of green, then red, blue last.
* This code does the right thing for R,G,B or B,G,R color orders only.
*/
#if RGB_RED == 0
cmax = c1; n = 1;
if (c0 > cmax) { cmax = c0; n = 0; }
if (c2 > cmax) { n = 2; }
#else
cmax = c1; n = 1;
if (c2 > cmax) { cmax = c2; n = 2; }
if (c0 > cmax) { n = 0; }
#endif
/* Choose split point along selected axis, and update box bounds.
* Current algorithm: split at halfway point.
* (Since the box has been shrunk to minimum volume,
* any split will produce two nonempty subboxes.)
* Note that lb value is max for lower box, so must be < old max.
*/
switch (n) {
case 0:
lb = (b1->c0max + b1->c0min) / 2;
b1->c0max = lb;
b2->c0min = lb+1;
break;
case 1:
lb = (b1->c1max + b1->c1min) / 2;
b1->c1max = lb;
b2->c1min = lb+1;
break;
case 2:
lb = (b1->c2max + b1->c2min) / 2;
b1->c2max = lb;
b2->c2min = lb+1;
break;
}
/* Update stats for boxes */
update_box(cinfo, b1);
update_box(cinfo, b2);
numboxes++;
}
return numboxes;
}
LOCAL(void)
compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
/* Compute representative color for a box, put it in colormap[icolor] */
{
/* Current algorithm: mean weighted by pixels (not colors) */
/* Note it is important to get the rounding correct! */
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
histptr histp;
int c0,c1,c2;
int c0min,c0max,c1min,c1max,c2min,c2max;
long count;
long total = 0;
long c0total = 0;
long c1total = 0;
long c2total = 0;
c0min = boxp->c0min; c0max = boxp->c0max;
c1min = boxp->c1min; c1max = boxp->c1max;
c2min = boxp->c2min; c2max = boxp->c2max;
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++) {
if ((count = *histp++) != 0) {
total += count;
c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
}
}
}
cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
}
LOCAL(void)
select_colors (j_decompress_ptr cinfo, int desired_colors)
/* Master routine for color selection */
{
boxptr boxlist;
int numboxes;
int i;
/* Allocate workspace for box list */
boxlist = (boxptr) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box));
/* Initialize one box containing whole space */
numboxes = 1;
boxlist[0].c0min = 0;
boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
boxlist[0].c1min = 0;
boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
boxlist[0].c2min = 0;
boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
/* Shrink it to actually-used volume and set its statistics */
update_box(cinfo, & boxlist[0]);
/* Perform median-cut to produce final box list */
numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
/* Compute the representative color for each box, fill colormap */
for (i = 0; i < numboxes; i++)
compute_color(cinfo, & boxlist[i], i);
cinfo->actual_number_of_colors = numboxes;
TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
}
/*
* These routines are concerned with the time-critical task of mapping input
* colors to the nearest color in the selected colormap.
*
* We re-use the histogram space as an "inverse color map", essentially a
* cache for the results of nearest-color searches. All colors within a
* histogram cell will be mapped to the same colormap entry, namely the one
* closest to the cell's center. This may not be quite the closest entry to
* the actual input color, but it's almost as good. A zero in the cache
* indicates we haven't found the nearest color for that cell yet; the array
* is cleared to zeroes before starting the mapping pass. When we find the
* nearest color for a cell, its colormap index plus one is recorded in the
* cache for future use. The pass2 scanning routines call fill_inverse_cmap
* when they need to use an unfilled entry in the cache.
*
* Our method of efficiently finding nearest colors is based on the "locally
* sorted search" idea described by Heckbert and on the incremental distance
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
* the distances from a given colormap entry to each cell of the histogram can
* be computed quickly using an incremental method: the differences between
* distances to adjacent cells themselves differ by a constant. This allows a
* fairly fast implementation of the "brute force" approach of computing the
* distance from every colormap entry to every histogram cell. Unfortunately,
* it needs a work array to hold the best-distance-so-far for each histogram
* cell (because the inner loop has to be over cells, not colormap entries).
* The work array elements have to be INT32s, so the work array would need
* 256Kb at our recommended precision. This is not feasible in DOS machines.
*
* To get around these problems, we apply Thomas' method to compute the
* nearest colors for only the cells within a small subbox of the histogram.
* The work array need be only as big as the subbox, so the memory usage
* problem is solved. Furthermore, we need not fill subboxes that are never
* referenced in pass2; many images use only part of the color gamut, so a
* fair amount of work is saved. An additional advantage of this
* approach is that we can apply Heckbert's locality criterion to quickly
* eliminate colormap entries that are far away from the subbox; typically
* three-fourths of the colormap entries are rejected by Heckbert's criterion,
* and we need not compute their distances to individual cells in the subbox.
* The speed of this approach is heavily influenced by the subbox size: too
* small means too much overhead, too big loses because Heckbert's criterion
* can't eliminate as many colormap entries. Empirically the best subbox
* size seems to be about 1/512th of the histogram (1/8th in each direction).
*
* Thomas' article also describes a refined method which is asymptotically
* faster than the brute-force method, but it is also far more complex and
* cannot efficiently be applied to small subboxes. It is therefore not
* useful for programs intended to be portable to DOS machines. On machines
* with plenty of memory, filling the whole histogram in one shot with Thomas'
* refined method might be faster than the present code --- but then again,
* it might not be any faster, and it's certainly more complicated.
*/
/* log2(histogram cells in update box) for each axis; this can be adjusted */
#define BOX_C0_LOG (HIST_C0_BITS-3)
#define BOX_C1_LOG (HIST_C1_BITS-3)
#define BOX_C2_LOG (HIST_C2_BITS-3)
#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
/*
* The next three routines implement inverse colormap filling. They could
* all be folded into one big routine, but splitting them up this way saves
* some stack space (the mindist[] and bestdist[] arrays need not coexist)
* and may allow some compilers to produce better code by registerizing more
* inner-loop variables.
*/
LOCAL(int)
find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
* for the nearest entry to some cell(s) in the update box. The update box
* is specified by the center coordinates of its first cell. The number of
* candidate colormap entries is returned, and their colormap indexes are
* placed in colorlist[].
* This routine uses Heckbert's "locally sorted search" criterion to select
* the colors that need further consideration.
*/
{
int numcolors = cinfo->actual_number_of_colors;
int maxc0, maxc1, maxc2;
int centerc0, centerc1, centerc2;
int i, x, ncolors;
INT32 minmaxdist, min_dist, max_dist, tdist;
INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
/* Compute true coordinates of update box's upper corner and center.
* Actually we compute the coordinates of the center of the upper-corner
* histogram cell, which are the upper bounds of the volume we care about.
* Note that since ">>" rounds down, the "center" values may be closer to
* min than to max; hence comparisons to them must be "<=", not "<".
*/
maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
centerc0 = (minc0 + maxc0) >> 1;
maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
centerc1 = (minc1 + maxc1) >> 1;
maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
centerc2 = (minc2 + maxc2) >> 1;
/* For each color in colormap, find:
* 1. its minimum squared-distance to any point in the update box
* (zero if color is within update box);
* 2. its maximum squared-distance to any point in the update box.
* Both of these can be found by considering only the corners of the box.
* We save the minimum distance for each color in mindist[];
* only the smallest maximum distance is of interest.
*/
minmaxdist = 0x7FFFFFFFL;
for (i = 0; i < numcolors; i++) {
/* We compute the squared-c0-distance term, then add in the other two. */
x = GETJSAMPLE(cinfo->colormap[0][i]);
if (x < minc0) {
tdist = (x - minc0) * C0_SCALE;
min_dist = tdist*tdist;
tdist = (x - maxc0) * C0_SCALE;
max_dist = tdist*tdist;
} else if (x > maxc0) {
tdist = (x - maxc0) * C0_SCALE;
min_dist = tdist*tdist;
tdist = (x - minc0) * C0_SCALE;
max_dist = tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
min_dist = 0;
if (x <= centerc0) {
tdist = (x - maxc0) * C0_SCALE;
max_dist = tdist*tdist;
} else {
tdist = (x - minc0) * C0_SCALE;
max_dist = tdist*tdist;
}
}
x = GETJSAMPLE(cinfo->colormap[1][i]);
if (x < minc1) {
tdist = (x - minc1) * C1_SCALE;
min_dist += tdist*tdist;
tdist = (x - maxc1) * C1_SCALE;
max_dist += tdist*tdist;
} else if (x > maxc1) {
tdist = (x - maxc1) * C1_SCALE;
min_dist += tdist*tdist;
tdist = (x - minc1) * C1_SCALE;
max_dist += tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerc1) {
tdist = (x - maxc1) * C1_SCALE;
max_dist += tdist*tdist;
} else {
tdist = (x - minc1) * C1_SCALE;
max_dist += tdist*tdist;
}
}
x = GETJSAMPLE(cinfo->colormap[2][i]);
if (x < minc2) {
tdist = (x - minc2) * C2_SCALE;
min_dist += tdist*tdist;
tdist = (x - maxc2) * C2_SCALE;
max_dist += tdist*tdist;
} else if (x > maxc2) {
tdist = (x - maxc2) * C2_SCALE;
min_dist += tdist*tdist;
tdist = (x - minc2) * C2_SCALE;
max_dist += tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerc2) {
tdist = (x - maxc2) * C2_SCALE;
max_dist += tdist*tdist;
} else {
tdist = (x - minc2) * C2_SCALE;
max_dist += tdist*tdist;
}
}
mindist[i] = min_dist; /* save away the results */
if (max_dist < minmaxdist)
minmaxdist = max_dist;
}
/* Now we know that no cell in the update box is more than minmaxdist
* away from some colormap entry. Therefore, only colors that are
* within minmaxdist of some part of the box need be considered.
*/
ncolors = 0;
for (i = 0; i < numcolors; i++) {
if (mindist[i] <= minmaxdist)
colorlist[ncolors++] = (JSAMPLE) i;
}
return ncolors;
}
LOCAL(void)
find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
* given the list of candidate colors prepared by find_nearby_colors.
* Return the indexes of the closest entries in the bestcolor[] array.
* This routine uses Thomas' incremental distance calculation method to
* find the distance from a colormap entry to successive cells in the box.
*/
{
int ic0, ic1, ic2;
int i, icolor;
register INT32 * bptr; /* pointer into bestdist[] array */
JSAMPLE * cptr; /* pointer into bestcolor[] array */
INT32 dist0, dist1; /* initial distance values */
register INT32 dist2; /* current distance in inner loop */
INT32 xx0, xx1; /* distance increments */
register INT32 xx2;
INT32 inc0, inc1, inc2; /* initial values for increments */
/* This array holds the distance to the nearest-so-far color for each cell */
INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
/* Initialize best-distance for each cell of the update box */
bptr = bestdist;
for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
*bptr++ = 0x7FFFFFFFL;
/* For each color selected by find_nearby_colors,
* compute its distance to the center of each cell in the box.
* If that's less than best-so-far, update best distance and color number.
*/
/* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
for (i = 0; i < numcolors; i++) {
icolor = GETJSAMPLE(colorlist[i]);
/* Compute (square of) distance from minc0/c1/c2 to this color */
inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
dist0 = inc0*inc0;
inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
dist0 += inc1*inc1;
inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
dist0 += inc2*inc2;
/* Form the initial difference increments */
inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
/* Now loop over all cells in box, updating distance per Thomas method */
bptr = bestdist;
cptr = bestcolor;
xx0 = inc0;
for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
dist1 = dist0;
xx1 = inc1;
for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
dist2 = dist1;
xx2 = inc2;
for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
if (dist2 < *bptr) {
*bptr = dist2;
*cptr = (JSAMPLE) icolor;
}
dist2 += xx2;
xx2 += 2 * STEP_C2 * STEP_C2;
bptr++;
cptr++;
}
dist1 += xx1;
xx1 += 2 * STEP_C1 * STEP_C1;
}
dist0 += xx0;
xx0 += 2 * STEP_C0 * STEP_C0;
}
}
}
LOCAL(void)
fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
int minc0, minc1, minc2; /* lower left corner of update box */
int ic0, ic1, ic2;
register JSAMPLE * cptr; /* pointer into bestcolor[] array */
register histptr cachep; /* pointer into main cache array */
/* This array lists the candidate colormap indexes. */
JSAMPLE colorlist[MAXNUMCOLORS];
int numcolors; /* number of candidate colors */
/* This array holds the actually closest colormap index for each cell. */
JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
/* Convert cell coordinates to update box ID */
c0 >>= BOX_C0_LOG;
c1 >>= BOX_C1_LOG;
c2 >>= BOX_C2_LOG;
/* Compute true coordinates of update box's origin corner.
* Actually we compute the coordinates of the center of the corner
* histogram cell, which are the lower bounds of the volume we care about.
*/
minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
/* Determine which colormap entries are close enough to be candidates
* for the nearest entry to some cell in the update box.
*/
numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
/* Determine the actually nearest colors. */
find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
bestcolor);
/* Save the best color numbers (plus 1) in the main cache array */
c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
c1 <<= BOX_C1_LOG;
c2 <<= BOX_C2_LOG;
cptr = bestcolor;
for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
cachep = & histogram[c0+ic0][c1+ic1][c2];
for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
}
}
}
}
/*
* Map some rows of pixels to the output colormapped representation.
*/
METHODDEF(void)
pass2_no_dither (j_decompress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
/* This version performs no dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
register JSAMPROW inptr, outptr;
register histptr cachep;
register int c0, c1, c2;
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
for (row = 0; row < num_rows; row++) {
inptr = input_buf[row];
outptr = output_buf[row];
for (col = width; col > 0; col--) {
/* get pixel value and index into the cache */
c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
cachep = & histogram[c0][c1][c2];
/* If we have not seen this color before, find nearest colormap entry */
/* and update the cache */
if (*cachep == 0)
fill_inverse_cmap(cinfo, c0,c1,c2);
/* Now emit the colormap index for this cell */
*outptr++ = (JSAMPLE) (*cachep - 1);
}
}
}
METHODDEF(void)
pass2_fs_dither (j_decompress_ptr cinfo,
JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
/* This version performs Floyd-Steinberg dithering */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
register FSERRPTR errorptr; /* => fserrors[] at column before current */
JSAMPROW inptr; /* => current input pixel */
JSAMPROW outptr; /* => current output pixel */
histptr cachep;
int dir; /* +1 or -1 depending on direction */
int dir3; /* 3*dir, for advancing inptr & errorptr */
int row;
JDIMENSION col;
JDIMENSION width = cinfo->output_width;
JSAMPLE *range_limit = cinfo->sample_range_limit;
int *error_limit = cquantize->error_limiter;
JSAMPROW colormap0 = cinfo->colormap[0];
JSAMPROW colormap1 = cinfo->colormap[1];
JSAMPROW colormap2 = cinfo->colormap[2];
SHIFT_TEMPS
for (row = 0; row < num_rows; row++) {
inptr = input_buf[row];
outptr = output_buf[row];
if (cquantize->on_odd_row) {
/* work right to left in this row */
inptr += (width-1) * 3; /* so point to rightmost pixel */
outptr += width-1;
dir = -1;
dir3 = -3;
errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
cquantize->on_odd_row = FALSE; /* flip for next time */
} else {
/* work left to right in this row */
dir = 1;
dir3 = 3;
errorptr = cquantize->fserrors; /* => entry before first real column */
cquantize->on_odd_row = TRUE; /* flip for next time */
}
/* Preset error values: no error propagated to first pixel from left */
cur0 = cur1 = cur2 = 0;
/* and no error propagated to row below yet */
belowerr0 = belowerr1 = belowerr2 = 0;
bpreverr0 = bpreverr1 = bpreverr2 = 0;
for (col = width; col > 0; col--) {
/* curN holds the error propagated from the previous pixel on the
* current line. Add the error propagated from the previous line
* to form the complete error correction term for this pixel, and
* round the error term (which is expressed * 16) to an integer.
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
* for either sign of the error value.
* Note: errorptr points to *previous* column's array entry.
*/
cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
/* Limit the error using transfer function set by init_error_limit.
* See comments with init_error_limit for rationale.
*/
cur0 = error_limit[cur0];
cur1 = error_limit[cur1];
cur2 = error_limit[cur2];
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
* The maximum error is +- MAXJSAMPLE (or less with error limiting);
* this sets the required size of the range_limit array.
*/
cur0 += GETJSAMPLE(inptr[0]);
cur1 += GETJSAMPLE(inptr[1]);
cur2 += GETJSAMPLE(inptr[2]);
cur0 = GETJSAMPLE(range_limit[cur0]);
cur1 = GETJSAMPLE(range_limit[cur1]);
cur2 = GETJSAMPLE(range_limit[cur2]);
/* Index into the cache with adjusted pixel value */
cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
/* If we have not seen this color before, find nearest colormap */
/* entry and update the cache */
if (*cachep == 0)
fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
/* Now emit the colormap index for this cell */
{ register int pixcode = *cachep - 1;
*outptr = (JSAMPLE) pixcode;
/* Compute representation error for this pixel */
cur0 -= GETJSAMPLE(colormap0[pixcode]);
cur1 -= GETJSAMPLE(colormap1[pixcode]);
cur2 -= GETJSAMPLE(colormap2[pixcode]);
}
/* Compute error fractions to be propagated to adjacent pixels.
* Add these into the running sums, and simultaneously shift the
* next-line error sums left by 1 column.
*/
{ register LOCFSERROR bnexterr, delta;
bnexterr = cur0; /* Process component 0 */
delta = cur0 * 2;
cur0 += delta; /* form error * 3 */
errorptr[0] = (FSERROR) (bpreverr0 + cur0);
cur0 += delta; /* form error * 5 */
bpreverr0 = belowerr0 + cur0;
belowerr0 = bnexterr;
cur0 += delta; /* form error * 7 */
bnexterr = cur1; /* Process component 1 */
delta = cur1 * 2;
cur1 += delta; /* form error * 3 */
errorptr[1] = (FSERROR) (bpreverr1 + cur1);
cur1 += delta; /* form error * 5 */
bpreverr1 = belowerr1 + cur1;
belowerr1 = bnexterr;
cur1 += delta; /* form error * 7 */
bnexterr = cur2; /* Process component 2 */
delta = cur2 * 2;
cur2 += delta; /* form error * 3 */
errorptr[2] = (FSERROR) (bpreverr2 + cur2);
cur2 += delta; /* form error * 5 */
bpreverr2 = belowerr2 + cur2;
belowerr2 = bnexterr;
cur2 += delta; /* form error * 7 */
}
/* At this point curN contains the 7/16 error value to be propagated
* to the next pixel on the current line, and all the errors for the
* next line have been shifted over. We are therefore ready to move on.
*/
inptr += dir3; /* Advance pixel pointers to next column */
outptr += dir;
errorptr += dir3; /* advance errorptr to current column */
}
/* Post-loop cleanup: we must unload the final error values into the
* final fserrors[] entry. Note we need not unload belowerrN because
* it is for the dummy column before or after the actual array.
*/
errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
errorptr[1] = (FSERROR) bpreverr1;
errorptr[2] = (FSERROR) bpreverr2;
}
}
/*
* Initialize the error-limiting transfer function (lookup table).
* The raw F-S error computation can potentially compute error values of up to
* +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
* much less, otherwise obviously wrong pixels will be created. (Typical
* effects include weird fringes at color-area boundaries, isolated bright
* pixels in a dark area, etc.) The standard advice for avoiding this problem
* is to ensure that the "corners" of the color cube are allocated as output
* colors; then repeated errors in the same direction cannot cause cascading
* error buildup. However, that only prevents the error from getting
* completely out of hand; Aaron Giles reports that error limiting improves
* the results even with corner colors allocated.
* A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
* well, but the smoother transfer function used below is even better. Thanks
* to Aaron Giles for this idea.
*/
LOCAL(void)
init_error_limit (j_decompress_ptr cinfo)
/* Allocate and fill in the error_limiter table */
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
int * table;
int in, out;
table = (int *) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
cquantize->error_limiter = table;
#define STEPSIZE ((MAXJSAMPLE+1)/16)
/* Map errors 1:1 up to +- MAXJSAMPLE/16 */
out = 0;
for (in = 0; in < STEPSIZE; in++, out++) {
table[in] = out; table[-in] = -out;
}
/* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
table[in] = out; table[-in] = -out;
}
/* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
for (; in <= MAXJSAMPLE; in++) {
table[in] = out; table[-in] = -out;
}
#undef STEPSIZE
}
/*
* Finish up at the end of each pass.
*/
METHODDEF(void)
finish_pass1 (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
/* Select the representative colors and fill in cinfo->colormap */
cinfo->colormap = cquantize->sv_colormap;
select_colors(cinfo, cquantize->desired);
/* Force next pass to zero the color index table */
cquantize->needs_zeroed = TRUE;
}
METHODDEF(void)
finish_pass2 (j_decompress_ptr cinfo)
{
/* no work */
}
/*
* Initialize for each processing pass.
*/
METHODDEF(void)
start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
hist3d histogram = cquantize->histogram;
int i;
/* Only F-S dithering or no dithering is supported. */
/* If user asks for ordered dither, give him F-S. */
if (cinfo->dither_mode != JDITHER_NONE)
cinfo->dither_mode = JDITHER_FS;
if (is_pre_scan) {
/* Set up method pointers */
cquantize->pub.color_quantize = prescan_quantize;
cquantize->pub.finish_pass = finish_pass1;
cquantize->needs_zeroed = TRUE; /* Always zero histogram */
} else {
/* Set up method pointers */
if (cinfo->dither_mode == JDITHER_FS)
cquantize->pub.color_quantize = pass2_fs_dither;
else
cquantize->pub.color_quantize = pass2_no_dither;
cquantize->pub.finish_pass = finish_pass2;
/* Make sure color count is acceptable */
i = cinfo->actual_number_of_colors;
if (i < 1)
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
if (i > MAXNUMCOLORS)
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
if (cinfo->dither_mode == JDITHER_FS) {
size_t arraysize = (size_t) ((cinfo->output_width + 2) *
(3 * SIZEOF(FSERROR)));
/* Allocate Floyd-Steinberg workspace if we didn't already. */
if (cquantize->fserrors == NULL)
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
/* Initialize the propagated errors to zero. */
jzero_far((void FAR *) cquantize->fserrors, arraysize);
/* Make the error-limit table if we didn't already. */
if (cquantize->error_limiter == NULL)
init_error_limit(cinfo);
cquantize->on_odd_row = FALSE;
}
}
/* Zero the histogram or inverse color map, if necessary */
if (cquantize->needs_zeroed) {
for (i = 0; i < HIST_C0_ELEMS; i++) {
jzero_far((void FAR *) histogram[i],
HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
}
cquantize->needs_zeroed = FALSE;
}
}
/*
* Switch to a new external colormap between output passes.
*/
METHODDEF(void)
new_color_map_2_quant (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
/* Reset the inverse color map */
cquantize->needs_zeroed = TRUE;
}
/*
* Module initialization routine for 2-pass color quantization.
*/
GLOBAL(void)
jinit_2pass_quantizer (j_decompress_ptr cinfo)
{
my_cquantize_ptr cquantize;
int i;
cquantize = (my_cquantize_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_cquantizer));
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
cquantize->pub.start_pass = start_pass_2_quant;
cquantize->pub.new_color_map = new_color_map_2_quant;
cquantize->fserrors = NULL; /* flag optional arrays not allocated */
cquantize->error_limiter = NULL;
/* Make sure jdmaster didn't give me a case I can't handle */
if (cinfo->out_color_components != 3)
ERREXIT(cinfo, JERR_NOTIMPL);
/* Allocate the histogram/inverse colormap storage */
cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
for (i = 0; i < HIST_C0_ELEMS; i++) {
cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
((j_common_ptr) cinfo, JPOOL_IMAGE,
HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
}
cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
/* Allocate storage for the completed colormap, if required.
* We do this now since it is FAR storage and may affect
* the memory manager's space calculations.
*/
if (cinfo->enable_2pass_quant) {
/* Make sure color count is acceptable */
int desired = cinfo->desired_number_of_colors;
/* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
if (desired < 8)
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
/* Make sure colormap indexes can be represented by JSAMPLEs */
if (desired > MAXNUMCOLORS)
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3);
cquantize->desired = desired;
} else
cquantize->sv_colormap = NULL;
/* Only F-S dithering or no dithering is supported. */
/* If user asks for ordered dither, give him F-S. */
if (cinfo->dither_mode != JDITHER_NONE)
cinfo->dither_mode = JDITHER_FS;
/* Allocate Floyd-Steinberg workspace if necessary.
* This isn't really needed until pass 2, but again it is FAR storage.
* Although we will cope with a later change in dither_mode,
* we do not promise to honor max_memory_to_use if dither_mode changes.
*/
if (cinfo->dither_mode == JDITHER_FS) {
cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
((j_common_ptr) cinfo, JPOOL_IMAGE,
(size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR))));
/* Might as well create the error-limiting table too. */
init_error_limit(cinfo);
}
}
#endif /* QUANT_2PASS_SUPPORTED */
/*
* jutils.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains tables and miscellaneous utility routines needed
* for both compression and decompression.
* Note we prefix all global names with "j" to minimize conflicts with
* a surrounding application.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
/*
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
* of a DCT block read in natural order (left to right, top to bottom).
*/
#if 0 /* This table is not actually needed in v6a */
const int jpeg_zigzag_order[DCTSIZE2] = {
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
#endif
/*
* jpeg_natural_order[i] is the natural-order position of the i'th element
* of zigzag order.
*
* When reading corrupted data, the Huffman decoders could attempt
* to reference an entry beyond the end of this array (if the decoded
* zero run length reaches past the end of the block). To prevent
* wild stores without adding an inner-loop test, we put some extra
* "63"s after the real entries. This will cause the extra coefficient
* to be stored in location 63 of the block, not somewhere random.
* The worst case would be a run-length of 15, which means we need 16
* fake entries.
*/
const int jpeg_natural_order[DCTSIZE2+16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
/*
* Arithmetic utilities
*/
GLOBAL(long)
jdiv_round_up (long a, long b)
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
/* Assumes a >= 0, b > 0 */
{
return (a + b - 1L) / b;
}
GLOBAL(long)
jround_up (long a, long b)
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
/* Assumes a >= 0, b > 0 */
{
a += b - 1L;
return a - (a % b);
}
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
* and coefficient-block arrays. This won't work on 80x86 because the arrays
* are FAR and we're assuming a small-pointer memory model. However, some
* DOS compilers provide far-pointer versions of memcpy() and memset() even
* in the small-model libraries. These will be used if USE_FMEM is defined.
* Otherwise, the routines below do it the hard way. (The performance cost
* is not all that great, because these routines aren't very heavily used.)
*/
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
#define FMEMZERO(target,size) MEMZERO(target,size)
#else /* 80x86 case, define if we can */
#ifdef USE_FMEM
#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
#endif
#endif
GLOBAL(void)
jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
JSAMPARRAY output_array, int dest_row,
int num_rows, JDIMENSION num_cols)
/* Copy some rows of samples from one place to another.
* num_rows rows are copied from input_array[source_row++]
* to output_array[dest_row++]; these areas may overlap for duplication.
* The source and destination arrays must be at least as wide as num_cols.
*/
{
register JSAMPROW inptr, outptr;
#ifdef FMEMCOPY
register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
#else
register JDIMENSION count;
#endif
register int row;
input_array += source_row;
output_array += dest_row;
for (row = num_rows; row > 0; row--) {
inptr = *input_array++;
outptr = *output_array++;
#ifdef FMEMCOPY
FMEMCOPY(outptr, inptr, count);
#else
for (count = num_cols; count > 0; count--)
*outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
#endif
}
}
GLOBAL(void)
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
JDIMENSION num_blocks)
/* Copy a row of coefficient blocks from one place to another. */
{
#ifdef FMEMCOPY
FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
#else
register JCOEFPTR inptr, outptr;
register long count;
inptr = (JCOEFPTR) input_row;
outptr = (JCOEFPTR) output_row;
for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
*outptr++ = *inptr++;
}
#endif
}
GLOBAL(void)
jzero_far (void FAR * target, size_t bytestozero)
/* Zero out a chunk of FAR memory. */
/* This might be sample-array data, block-array data, or alloc_large data. */
{
#ifdef FMEMZERO
FMEMZERO(target, bytestozero);
#else
register char FAR * ptr = (char FAR *) target;
register size_t count;
for (count = bytestozero; count > 0; count--) {
*ptr++ = 0;
}
#endif
}
/*
* jversion.h
*
* Copyright (C) 1991-1998, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains software version identification.
*/
#define JVERSION "6b 27-Mar-1998"
#define JCOPYRIGHT "Copyright (C) 1998, Thomas G. Lane"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment