Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
747088ea
Commit
747088ea
authored
Sep 30, 2014
by
Davis King
Browse files
Added save_jpeg()
parent
3bef1e6b
Changes
25
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
562 additions
and
0 deletions
+562
-0
dlib/external/libjpeg/jfdctint.cpp
dlib/external/libjpeg/jfdctint.cpp
+283
-0
dlib/image_io.h
dlib/image_io.h
+1
-0
dlib/image_saver/save_jpeg.cpp
dlib/image_saver/save_jpeg.cpp
+147
-0
dlib/image_saver/save_jpeg.h
dlib/image_saver/save_jpeg.h
+82
-0
dlib/image_saver/save_jpeg_abstract.h
dlib/image_saver/save_jpeg_abstract.h
+49
-0
No files found.
dlib/external/libjpeg/jfdctint.cpp
0 → 100644
View file @
747088ea
/*
* jfdctint.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h"
/* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry
,
this
code
only
copes
with
8
x8
DCTs
.
/* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
* larger than the true DCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D DCT,
* because the y0 and y4 outputs need not be divided by sqrt(N).
* In the IJG code, this factor of 8 is removed by the quantization step
* (in jcdctmgr.c), NOT in this module.
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (For 12-bit sample data, the intermediate
* array is long anyway.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1
/* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((long) 2446)
/* FIX(0.298631336) */
#define FIX_0_390180644 ((long) 3196)
/* FIX(0.390180644) */
#define FIX_0_541196100 ((long) 4433)
/* FIX(0.541196100) */
#define FIX_0_765366865 ((long) 6270)
/* FIX(0.765366865) */
#define FIX_0_899976223 ((long) 7373)
/* FIX(0.899976223) */
#define FIX_1_175875602 ((long) 9633)
/* FIX(1.175875602) */
#define FIX_1_501321110 ((long) 12299)
/* FIX(1.501321110) */
#define FIX_1_847759065 ((long) 15137)
/* FIX(1.847759065) */
#define FIX_1_961570560 ((long) 16069)
/* FIX(1.961570560) */
#define FIX_2_053119869 ((long) 16819)
/* FIX(2.053119869) */
#define FIX_2_562915447 ((long) 20995)
/* FIX(2.562915447) */
#define FIX_3_072711026 ((long) 25172)
/* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an long variable by an long constant to yield an long result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL
(
void
)
jpeg_fdct_islow
(
DCTELEM
*
data
)
{
long
tmp0
,
tmp1
,
tmp2
,
tmp3
,
tmp4
,
tmp5
,
tmp6
,
tmp7
;
long
tmp10
,
tmp11
,
tmp12
,
tmp13
;
long
z1
,
z2
,
z3
,
z4
,
z5
;
DCTELEM
*
dataptr
;
int
ctr
;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
0
]
+
dataptr
[
7
];
tmp7
=
dataptr
[
0
]
-
dataptr
[
7
];
tmp1
=
dataptr
[
1
]
+
dataptr
[
6
];
tmp6
=
dataptr
[
1
]
-
dataptr
[
6
];
tmp2
=
dataptr
[
2
]
+
dataptr
[
5
];
tmp5
=
dataptr
[
2
]
-
dataptr
[
5
];
tmp3
=
dataptr
[
3
]
+
dataptr
[
4
];
tmp4
=
dataptr
[
3
]
-
dataptr
[
4
];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10
=
tmp0
+
tmp3
;
tmp13
=
tmp0
-
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
dataptr
[
0
]
=
(
DCTELEM
)
((
tmp10
+
tmp11
)
<<
PASS1_BITS
);
dataptr
[
4
]
=
(
DCTELEM
)
((
tmp10
-
tmp11
)
<<
PASS1_BITS
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
2
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
-
PASS1_BITS
);
dataptr
[
6
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
-
PASS1_BITS
);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1
=
tmp4
+
tmp7
;
z2
=
tmp5
+
tmp6
;
z3
=
tmp4
+
tmp6
;
z4
=
tmp5
+
tmp7
;
z5
=
MULTIPLY
(
z3
+
z4
,
FIX_1_175875602
);
/* sqrt(2) * c3 */
tmp4
=
MULTIPLY
(
tmp4
,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
tmp5
=
MULTIPLY
(
tmp5
,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
tmp6
=
MULTIPLY
(
tmp6
,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
tmp7
=
MULTIPLY
(
tmp7
,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
z1
=
MULTIPLY
(
z1
,
-
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
z2
=
MULTIPLY
(
z2
,
-
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
z3
=
MULTIPLY
(
z3
,
-
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
z4
=
MULTIPLY
(
z4
,
-
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
z3
+=
z5
;
z4
+=
z5
;
dataptr
[
7
]
=
(
DCTELEM
)
DESCALE
(
tmp4
+
z1
+
z3
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
5
]
=
(
DCTELEM
)
DESCALE
(
tmp5
+
z2
+
z4
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
3
]
=
(
DCTELEM
)
DESCALE
(
tmp6
+
z2
+
z3
,
CONST_BITS
-
PASS1_BITS
);
dataptr
[
1
]
=
(
DCTELEM
)
DESCALE
(
tmp7
+
z1
+
z4
,
CONST_BITS
-
PASS1_BITS
);
dataptr
+=
DCTSIZE
;
/* advance pointer to next row */
}
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr
=
data
;
for
(
ctr
=
DCTSIZE
-
1
;
ctr
>=
0
;
ctr
--
)
{
tmp0
=
dataptr
[
DCTSIZE
*
0
]
+
dataptr
[
DCTSIZE
*
7
];
tmp7
=
dataptr
[
DCTSIZE
*
0
]
-
dataptr
[
DCTSIZE
*
7
];
tmp1
=
dataptr
[
DCTSIZE
*
1
]
+
dataptr
[
DCTSIZE
*
6
];
tmp6
=
dataptr
[
DCTSIZE
*
1
]
-
dataptr
[
DCTSIZE
*
6
];
tmp2
=
dataptr
[
DCTSIZE
*
2
]
+
dataptr
[
DCTSIZE
*
5
];
tmp5
=
dataptr
[
DCTSIZE
*
2
]
-
dataptr
[
DCTSIZE
*
5
];
tmp3
=
dataptr
[
DCTSIZE
*
3
]
+
dataptr
[
DCTSIZE
*
4
];
tmp4
=
dataptr
[
DCTSIZE
*
3
]
-
dataptr
[
DCTSIZE
*
4
];
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp10
=
tmp0
+
tmp3
;
tmp13
=
tmp0
-
tmp3
;
tmp11
=
tmp1
+
tmp2
;
tmp12
=
tmp1
-
tmp2
;
dataptr
[
DCTSIZE
*
0
]
=
(
DCTELEM
)
DESCALE
(
tmp10
+
tmp11
,
PASS1_BITS
);
dataptr
[
DCTSIZE
*
4
]
=
(
DCTELEM
)
DESCALE
(
tmp10
-
tmp11
,
PASS1_BITS
);
z1
=
MULTIPLY
(
tmp12
+
tmp13
,
FIX_0_541196100
);
dataptr
[
DCTSIZE
*
2
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp13
,
FIX_0_765366865
),
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
6
]
=
(
DCTELEM
)
DESCALE
(
z1
+
MULTIPLY
(
tmp12
,
-
FIX_1_847759065
),
CONST_BITS
+
PASS1_BITS
);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents cos(K*pi/16).
* i0..i3 in the paper are tmp4..tmp7 here.
*/
z1
=
tmp4
+
tmp7
;
z2
=
tmp5
+
tmp6
;
z3
=
tmp4
+
tmp6
;
z4
=
tmp5
+
tmp7
;
z5
=
MULTIPLY
(
z3
+
z4
,
FIX_1_175875602
);
/* sqrt(2) * c3 */
tmp4
=
MULTIPLY
(
tmp4
,
FIX_0_298631336
);
/* sqrt(2) * (-c1+c3+c5-c7) */
tmp5
=
MULTIPLY
(
tmp5
,
FIX_2_053119869
);
/* sqrt(2) * ( c1+c3-c5+c7) */
tmp6
=
MULTIPLY
(
tmp6
,
FIX_3_072711026
);
/* sqrt(2) * ( c1+c3+c5-c7) */
tmp7
=
MULTIPLY
(
tmp7
,
FIX_1_501321110
);
/* sqrt(2) * ( c1+c3-c5-c7) */
z1
=
MULTIPLY
(
z1
,
-
FIX_0_899976223
);
/* sqrt(2) * (c7-c3) */
z2
=
MULTIPLY
(
z2
,
-
FIX_2_562915447
);
/* sqrt(2) * (-c1-c3) */
z3
=
MULTIPLY
(
z3
,
-
FIX_1_961570560
);
/* sqrt(2) * (-c3-c5) */
z4
=
MULTIPLY
(
z4
,
-
FIX_0_390180644
);
/* sqrt(2) * (c5-c3) */
z3
+=
z5
;
z4
+=
z5
;
dataptr
[
DCTSIZE
*
7
]
=
(
DCTELEM
)
DESCALE
(
tmp4
+
z1
+
z3
,
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
5
]
=
(
DCTELEM
)
DESCALE
(
tmp5
+
z2
+
z4
,
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
3
]
=
(
DCTELEM
)
DESCALE
(
tmp6
+
z2
+
z3
,
CONST_BITS
+
PASS1_BITS
);
dataptr
[
DCTSIZE
*
1
]
=
(
DCTELEM
)
DESCALE
(
tmp7
+
z1
+
z4
,
CONST_BITS
+
PASS1_BITS
);
dataptr
++
;
/* advance pointer to next column */
}
}
#endif
/* DCT_ISLOW_SUPPORTED */
dlib/image_io.h
View file @
747088ea
...
@@ -9,6 +9,7 @@
...
@@ -9,6 +9,7 @@
#include "image_loader/load_image.h"
#include "image_loader/load_image.h"
#include "image_saver/image_saver.h"
#include "image_saver/image_saver.h"
#include "image_saver/save_png.h"
#include "image_saver/save_png.h"
#include "image_saver/save_jpeg.h"
#endif // DLIB_IMAGe_IO_
#endif // DLIB_IMAGe_IO_
dlib/image_saver/save_jpeg.cpp
0 → 100644
View file @
747088ea
// Copyright (C) 2014 Davis E. King (davis@dlib.net), Nils Labugt
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_JPEG_SAVER_CPp_
#define DLIB_JPEG_SAVER_CPp_
// only do anything with this file if DLIB_JPEG_SUPPORT is defined
#ifdef DLIB_JPEG_SUPPORT
#include "../array2d.h"
#include "../pixel.h"
#include "save_jpeg.h"
#include <stdio.h>
#include <jpeglib.h>
#include <sstream>
#include <setjmp.h>
#include "image_saver.h"
namespace
dlib
{
// ----------------------------------------------------------------------------------------
struct
jpeg_saver_error_mgr
{
jpeg_error_mgr
pub
;
/* "public" fields */
jmp_buf
setjmp_buffer
;
/* for return to caller */
};
void
jpeg_saver_error_exit
(
j_common_ptr
cinfo
)
{
/* cinfo->err really points to a jpeg_saver_error_mgr struct, so coerce pointer */
jpeg_saver_error_mgr
*
myerr
=
(
jpeg_saver_error_mgr
*
)
cinfo
->
err
;
/* Return control to the setjmp point */
longjmp
(
myerr
->
setjmp_buffer
,
1
);
}
// ----------------------------------------------------------------------------------------
void
save_jpeg
(
const
array2d
<
rgb_pixel
>&
img
,
const
std
::
string
&
filename
,
int
quality
)
{
FILE
*
outfile
=
fopen
(
filename
.
c_str
(),
"wb"
);
if
(
!
outfile
)
throw
image_save_error
(
"Can't open file "
+
filename
+
" for writing."
);
jpeg_compress_struct
cinfo
;
jpeg_saver_error_mgr
jerr
;
cinfo
.
err
=
jpeg_std_error
(
&
jerr
.
pub
);
jerr
.
pub
.
error_exit
=
jpeg_saver_error_exit
;
/* Establish the setjmp return context for my_error_exit to use. */
if
(
setjmp
(
jerr
.
setjmp_buffer
))
{
/* If we get here, the JPEG code has signaled an error.
* We need to clean up the JPEG object, close the input file, and return.
*/
jpeg_destroy_compress
(
&
cinfo
);
fclose
(
outfile
);
throw
image_save_error
(
"save_jpeg: error while writing "
+
filename
);
}
jpeg_create_compress
(
&
cinfo
);
jpeg_stdio_dest
(
&
cinfo
,
outfile
);
cinfo
.
image_width
=
img
.
nc
();
cinfo
.
image_height
=
img
.
nr
();
cinfo
.
input_components
=
3
;
cinfo
.
in_color_space
=
JCS_RGB
;
jpeg_set_defaults
(
&
cinfo
);
jpeg_set_quality
(
&
cinfo
,
quality
,
true
);
jpeg_start_compress
(
&
cinfo
,
true
);
// now write out the rows one at a time
while
(
cinfo
.
next_scanline
<
cinfo
.
image_height
)
{
JSAMPROW
row_pointer
=
(
JSAMPROW
)
&
img
[
cinfo
.
next_scanline
][
0
];
jpeg_write_scanlines
(
&
cinfo
,
&
row_pointer
,
1
);
}
jpeg_finish_compress
(
&
cinfo
);
jpeg_destroy_compress
(
&
cinfo
);
fclose
(
outfile
);
}
// ----------------------------------------------------------------------------------------
void
save_jpeg
(
const
array2d
<
unsigned
char
>&
img
,
const
std
::
string
&
filename
,
int
quality
)
{
FILE
*
outfile
=
fopen
(
filename
.
c_str
(),
"wb"
);
if
(
!
outfile
)
throw
image_save_error
(
"Can't open file "
+
filename
+
" for writing."
);
jpeg_compress_struct
cinfo
;
jpeg_saver_error_mgr
jerr
;
cinfo
.
err
=
jpeg_std_error
(
&
jerr
.
pub
);
jerr
.
pub
.
error_exit
=
jpeg_saver_error_exit
;
/* Establish the setjmp return context for my_error_exit to use. */
if
(
setjmp
(
jerr
.
setjmp_buffer
))
{
/* If we get here, the JPEG code has signaled an error.
* We need to clean up the JPEG object, close the input file, and return.
*/
jpeg_destroy_compress
(
&
cinfo
);
fclose
(
outfile
);
throw
image_save_error
(
"save_jpeg: error while writing "
+
filename
);
}
jpeg_create_compress
(
&
cinfo
);
jpeg_stdio_dest
(
&
cinfo
,
outfile
);
cinfo
.
image_width
=
img
.
nc
();
cinfo
.
image_height
=
img
.
nr
();
cinfo
.
input_components
=
1
;
cinfo
.
in_color_space
=
JCS_GRAYSCALE
;
jpeg_set_defaults
(
&
cinfo
);
jpeg_set_quality
(
&
cinfo
,
quality
,
true
);
jpeg_start_compress
(
&
cinfo
,
true
);
// now write out the rows one at a time
while
(
cinfo
.
next_scanline
<
cinfo
.
image_height
)
{
JSAMPROW
row_pointer
=
(
JSAMPROW
)
&
img
[
cinfo
.
next_scanline
][
0
];
jpeg_write_scanlines
(
&
cinfo
,
&
row_pointer
,
1
);
}
jpeg_finish_compress
(
&
cinfo
);
jpeg_destroy_compress
(
&
cinfo
);
fclose
(
outfile
);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_JPEG_SUPPORT
#endif // DLIB_JPEG_SAVER_CPp_
dlib/image_saver/save_jpeg.h
0 → 100644
View file @
747088ea
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SAVE_JPEG_Hh_
#define DLIB_SAVE_JPEG_Hh_
#include "save_jpeg_abstract.h"
#include "../enable_if.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../pixel.h"
#include "../image_processing/generic_image.h"
#include <string>
namespace
dlib
{
// ----------------------------------------------------------------------------------------
void
save_jpeg
(
const
array2d
<
rgb_pixel
>&
img
,
const
std
::
string
&
filename
,
int
quality
=
75
);
// ----------------------------------------------------------------------------------------
void
save_jpeg
(
const
array2d
<
unsigned
char
>&
img
,
const
std
::
string
&
filename
,
int
quality
=
75
);
// ----------------------------------------------------------------------------------------
template
<
typename
image_type
>
typename
disable_if
<
is_matrix
<
image_type
>
>::
type
save_jpeg
(
const
image_type
&
img
,
const
std
::
string
&
filename
,
int
quality
=
75
)
{
// Convert any kind of grayscale image to an unsigned char image
if
(
pixel_traits
<
typename
image_traits
<
image_type
>::
pixel_type
>::
grayscale
)
{
array2d
<
unsigned
char
>
temp
;
assign_image
(
temp
,
img
);
save_jpeg
(
temp
,
filename
,
quality
);
}
else
{
// This is some other kind of color image so just save it as an RGB image.
array2d
<
rgb_pixel
>
temp
;
assign_image
(
temp
,
img
);
save_jpeg
(
temp
,
filename
,
quality
);
}
}
// ----------------------------------------------------------------------------------------
template
<
typename
EXP
>
void
save_jpeg
(
const
matrix_exp
<
EXP
>&
img
,
const
std
::
string
&
file_name
,
int
quality
=
75
)
{
array2d
<
typename
EXP
::
type
>
temp
;
assign_image
(
temp
,
img
);
save_jpeg
(
temp
,
file_name
,
quality
);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SAVE_JPEG_Hh_
dlib/image_saver/save_jpeg_abstract.h
0 → 100644
View file @
747088ea
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_SAVE_JPEG_ABSTRACT_Hh_
#ifdef DLIB_SAVE_JPEG_ABSTRACT_Hh_
#include "../image_processing/generic_image.h"
#include "../pixel.h"
#include <string>
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
typename
image_type
>
void
save_jpeg
(
const
image_type
&
img
,
const
std
::
string
&
filename
,
int
quality
=
75
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h or a matrix expression
- image.size() != 0
ensures
- writes the image to the file indicated by file_name in the JPEG format.
- image[0][0] will be in the upper left corner of the image.
- image[image.nr()-1][image.nc()-1] will be in the lower right corner of the
image.
- This routine can save images containing any type of pixel. However,
save_jpeg() can only natively store rgb_pixel and uint8 pixel types. All
other pixel types will be converted into one of these types as appropriate
before being saved to disk.
throws
- image_save_error
This exception is thrown if there is an error that prevents us from saving
the image.
- std::bad_alloc
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SAVE_JPEG_ABSTRACT_Hh_
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment