Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
709b6667
Unverified
Commit
709b6667
authored
Nov 02, 2021
by
Adrià Arrufat
Committed by
GitHub
Nov 02, 2021
Browse files
Avoid redundant computations in the YOLO loss (#2453)
parent
a41b3d7c
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
4 additions
and
3 deletions
+4
-3
dlib/dnn/loss.h
dlib/dnn/loss.h
+4
-3
No files found.
dlib/dnn/loss.h
View file @
709b6667
...
@@ -3614,7 +3614,6 @@ namespace dlib
...
@@ -3614,7 +3614,6 @@ namespace dlib
std
::
vector
<
yolo_rect
>&
dets
std
::
vector
<
yolo_rect
>&
dets
)
)
{
{
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
,
sub
.
sample_expansion_factor
());
const
auto
&
anchors
=
options
.
anchors
.
at
(
tag_id
<
TAG_TYPE
>::
id
);
const
auto
&
anchors
=
options
.
anchors
.
at
(
tag_id
<
TAG_TYPE
>::
id
);
const
tensor
&
output_tensor
=
layer
<
TAG_TYPE
>
(
sub
).
get_output
();
const
tensor
&
output_tensor
=
layer
<
TAG_TYPE
>
(
sub
).
get_output
();
DLIB_CASSERT
(
static_cast
<
size_t
>
(
output_tensor
.
k
())
==
anchors
.
size
()
*
(
options
.
labels
.
size
()
+
5
));
DLIB_CASSERT
(
static_cast
<
size_t
>
(
output_tensor
.
k
())
==
anchors
.
size
()
*
(
options
.
labels
.
size
()
+
5
));
...
@@ -3672,7 +3671,6 @@ namespace dlib
...
@@ -3672,7 +3671,6 @@ namespace dlib
double
&
loss
double
&
loss
)
)
{
{
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
,
sub
.
sample_expansion_factor
());
const
tensor
&
output_tensor
=
layer
<
TAG_TYPE
>
(
sub
).
get_output
();
const
tensor
&
output_tensor
=
layer
<
TAG_TYPE
>
(
sub
).
get_output
();
const
auto
&
anchors
=
options
.
anchors
.
at
(
tag_id
<
TAG_TYPE
>::
id
);
const
auto
&
anchors
=
options
.
anchors
.
at
(
tag_id
<
TAG_TYPE
>::
id
);
DLIB_CASSERT
(
static_cast
<
size_t
>
(
output_tensor
.
k
())
==
anchors
.
size
()
*
(
options
.
labels
.
size
()
+
5
));
DLIB_CASSERT
(
static_cast
<
size_t
>
(
output_tensor
.
k
())
==
anchors
.
size
()
*
(
options
.
labels
.
size
()
+
5
));
...
@@ -3684,6 +3682,7 @@ namespace dlib
...
@@ -3684,6 +3682,7 @@ namespace dlib
tensor
&
grad
=
layer
<
TAG_TYPE
>
(
sub
).
get_gradient_input
();
tensor
&
grad
=
layer
<
TAG_TYPE
>
(
sub
).
get_gradient_input
();
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
grad
.
num_samples
());
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
grad
.
num_samples
());
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
output_tensor
.
num_samples
());
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
output_tensor
.
num_samples
());
const
double
input_area
=
input_tensor
.
nr
()
*
input_tensor
.
nc
();
float
*
g
=
grad
.
host
();
float
*
g
=
grad
.
host
();
// Compute the objectness loss for all grid cells
// Compute the objectness loss for all grid cells
...
@@ -3781,7 +3780,7 @@ namespace dlib
...
@@ -3781,7 +3780,7 @@ namespace dlib
const
double
th
=
truth_box
.
rect
.
height
()
/
(
anchors
[
a
].
height
+
truth_box
.
rect
.
height
());
const
double
th
=
truth_box
.
rect
.
height
()
/
(
anchors
[
a
].
height
+
truth_box
.
rect
.
height
());
// Scale regression error according to the truth size
// Scale regression error according to the truth size
const
double
scale_box
=
2
-
truth_box
.
rect
.
area
()
/
(
input_
tensor
.
nr
()
*
input_tensor
.
nc
())
;
const
double
scale_box
=
2
-
truth_box
.
rect
.
area
()
/
input_
area
;
// Compute the gradient for the box coordinates
// Compute the gradient for the box coordinates
g
[
x_idx
]
=
options
.
lambda_box
*
scale_box
*
(
out_data
[
x_idx
]
-
tx
);
g
[
x_idx
]
=
options
.
lambda_box
*
scale_box
*
(
out_data
[
x_idx
]
-
tx
);
...
@@ -3835,6 +3834,7 @@ namespace dlib
...
@@ -3835,6 +3834,7 @@ namespace dlib
double
adjust_threshold
=
0.25
double
adjust_threshold
=
0.25
)
const
)
const
{
{
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
,
sub
.
sample_expansion_factor
());
std
::
vector
<
yolo_rect
>
dets_accum
;
std
::
vector
<
yolo_rect
>
dets_accum
;
std
::
vector
<
yolo_rect
>
final_dets
;
std
::
vector
<
yolo_rect
>
final_dets
;
for
(
long
i
=
0
;
i
<
input_tensor
.
num_samples
();
++
i
)
for
(
long
i
=
0
;
i
<
input_tensor
.
num_samples
();
++
i
)
...
@@ -3868,6 +3868,7 @@ namespace dlib
...
@@ -3868,6 +3868,7 @@ namespace dlib
)
const
)
const
{
{
DLIB_CASSERT
(
input_tensor
.
num_samples
()
!=
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
!=
0
);
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
,
sub
.
sample_expansion_factor
());
double
loss
=
0
;
double
loss
=
0
;
for
(
long
i
=
0
;
i
<
input_tensor
.
num_samples
();
++
i
)
for
(
long
i
=
0
;
i
<
input_tensor
.
num_samples
();
++
i
)
{
{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment