Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
28c4a482
Commit
28c4a482
authored
May 17, 2016
by
Fm
Browse files
Grouping layer added
parent
617ffba6
Changes
5
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
737 additions
and
1 deletion
+737
-1
dlib/dnn/core.h
dlib/dnn/core.h
+494
-1
dlib/dnn/tensor_tools.cpp
dlib/dnn/tensor_tools.cpp
+60
-0
dlib/dnn/tensor_tools.h
dlib/dnn/tensor_tools.h
+37
-0
examples/CMakeLists.txt
examples/CMakeLists.txt
+1
-0
examples/dnn_inception_ex.cpp
examples/dnn_inception_ex.cpp
+145
-0
No files found.
dlib/dnn/core.h
View file @
28c4a482
This diff is collapsed.
Click to expand it.
dlib/dnn/tensor_tools.cpp
View file @
28c4a482
...
...
@@ -634,6 +634,66 @@ namespace dlib { namespace tt
#endif
}
// ----------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
void
concat_depth
(
tensor
&
dest
,
size_t
sample_offset
,
const
tensor
&
src
)
{
const
size_t
dest_sample_size
=
static_cast
<
size_t
>
(
dest
.
nc
()
*
dest
.
nr
()
*
dest
.
k
());
const
size_t
src_sample_size
=
static_cast
<
size_t
>
(
src
.
nc
()
*
src
.
nr
()
*
src
.
k
());
DLIB_CASSERT
(
dest
.
num_samples
()
==
src
.
num_samples
()
&&
dest
.
nc
()
==
src
.
nc
()
&&
dest
.
nr
()
==
src
.
nr
(),
"All sources should fit into dest tensor size"
);
DLIB_CASSERT
(
dest_sample_size
>=
src_sample_size
+
sample_offset
,
"Not enough space in dest tensor"
);
#ifdef DLIB_USE_CUDA
float
*
dest_p
=
dest
.
device_write_only
()
+
sample_offset
;
const
float
*
src_p
=
src
.
device
();
#else
float
*
dest_p
=
dest
.
host_write_only
()
+
sample_offset
;
const
float
*
src_p
=
src
.
host
();
#endif
for
(
unsigned
long
i
=
0
;
i
<
src
.
num_samples
();
++
i
)
{
#ifdef DLIB_USE_CUDA
CHECK_CUDA
(
cudaMemcpy
(
dest_p
,
src_p
,
src_sample_size
*
sizeof
(
float
),
cudaMemcpyDeviceToDevice
));
#else
::
memcpy
(
dest_p
,
src_p
,
src_sample_size
*
sizeof
(
float
));
#endif
dest_p
+=
dest_sample_size
;
src_p
+=
src_sample_size
;
}
}
void
split_depth
(
tensor
&
dest
,
size_t
sample_offset
,
const
tensor
&
src
)
{
const
size_t
dest_sample_size
=
static_cast
<
size_t
>
(
dest
.
nc
()
*
dest
.
nr
()
*
dest
.
k
());
const
size_t
src_sample_size
=
static_cast
<
size_t
>
(
src
.
nc
()
*
src
.
nr
()
*
src
.
k
());
DLIB_CASSERT
(
dest
.
num_samples
()
==
src
.
num_samples
()
&&
dest
.
nc
()
==
src
.
nc
()
&&
dest
.
nr
()
==
src
.
nr
(),
"All sources should fit into dest tensor size"
);
DLIB_CASSERT
(
dest_sample_size
<=
src_sample_size
-
sample_offset
,
"Not enough space in dest tensor"
);
#ifdef DLIB_USE_CUDA
float
*
dest_p
=
dest
.
device_write_only
();
const
float
*
src_p
=
src
.
device
()
+
sample_offset
;
#else
float
*
dest_p
=
dest
.
host_write_only
();
const
float
*
src_p
=
src
.
host
()
+
sample_offset
;
#endif
for
(
unsigned
long
i
=
0
;
i
<
src
.
num_samples
();
++
i
)
{
#ifdef DLIB_USE_CUDA
CHECK_CUDA
(
cudaMemcpy
(
dest_p
,
src_p
,
dest_sample_size
*
sizeof
(
float
),
cudaMemcpyDeviceToDevice
));
#else
::
memcpy
(
dest_p
,
src_p
,
dest_sample_size
*
sizeof
(
float
));
#endif
dest_p
+=
dest_sample_size
;
src_p
+=
src_sample_size
;
}
}
// ----------------------------------------------------------------------------------------
}}
...
...
dlib/dnn/tensor_tools.h
View file @
28c4a482
...
...
@@ -1171,6 +1171,43 @@ namespace dlib { namespace tt
resizable_tensor
accum_buffer
;
};
// ----------------------------------------------------------------------------------------
void
concat_depth
(
tensor
&
dest
,
size_t
sample_offset
,
const
tensor
&
src
);
/*!
requires
- dest.nc() == src.nc()
- dest.nr() == src.nr()
- dest.num_samples() == src.num_samples()
- dest.k() >= src.k() + sample_offset
- is_same_object(dest,src) == false
- sample_offset a count of elements, not bytes
ensures
- performs: dest[i, k + sample_offset, r, c] = src[i, k, r, c], where k in [0..src.k()]
Copies content of each sample from src in to corresponding place of sample at dst
!*/
void
split_depth
(
tensor
&
dest
,
size_t
sample_offset
,
const
tensor
&
src
);
/*!
requires
- dest.nc() == src.nc()
- dest.nr() == src.nr()
- dest.num_samples() == src.num_samples()
- dest.k() <= src.k() - sample_offset
- is_same_object(dest,src) == false
- sample_offset a count of elements, not bytes
ensures
- performs: dest[i, k, r, c] = src[i, k + sample_offset, r, c], where k in [0..dest.k()]
Fills each sample of dst from the corresponding part of each sample at src
!*/
// ----------------------------------------------------------------------------------------
...
...
examples/CMakeLists.txt
View file @
28c4a482
...
...
@@ -33,6 +33,7 @@ ENDMACRO()
if
(
COMPILER_CAN_DO_CPP_11
)
add_example
(
dnn_mnist_ex
)
add_example
(
dnn_mnist_advanced_ex
)
add_example
(
dnn_inception_ex
)
endif
()
#here we apply our macros
...
...
examples/dnn_inception_ex.cpp
0 → 100644
View file @
28c4a482
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the deep learning tools from the
dlib C++ Library. I'm assuming you have already read the dnn_mnist_ex.cpp
example. So in this example program I'm going to go over a number of more
advanced parts of the API, including:
- Using grp layer for constructing inception layer
Inception layer is a kind of NN architecture for running sevelar convolution types
on the same input area and joining all convolution results into one output.
For further reading refer http://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
*/
#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>
#include <tuple>
using
namespace
std
;
using
namespace
dlib
;
// Here we define inception module as described in GoogLeNet specification. The depth of each sublayer can be changed
template
<
typename
SUBNET
>
using
inception
=
grp
<
std
::
tuple
<
con
<
8
,
1
,
1
,
1
,
1
,
group_input
>
,
con
<
8
,
3
,
3
,
1
,
1
,
con
<
8
,
1
,
1
,
1
,
1
,
group_input
>>
,
con
<
8
,
5
,
5
,
1
,
1
,
con
<
8
,
1
,
1
,
1
,
1
,
group_input
>>
,
con
<
8
,
1
,
1
,
1
,
1
,
max_pool
<
3
,
3
,
1
,
1
,
group_input
>>>
,
SUBNET
>
;
int
main
(
int
argc
,
char
**
argv
)
try
{
// This example is going to run on the MNIST dataset.
if
(
argc
!=
2
)
{
cout
<<
"This example needs the MNIST dataset to run!"
<<
endl
;
cout
<<
"You can get MNIST from http://yann.lecun.com/exdb/mnist/"
<<
endl
;
cout
<<
"Download the 4 files that comprise the dataset, decompress them, and"
<<
endl
;
cout
<<
"put them in a folder. Then give that folder as input to this program."
<<
endl
;
return
1
;
}
std
::
vector
<
matrix
<
unsigned
char
>>
training_images
;
std
::
vector
<
unsigned
long
>
training_labels
;
std
::
vector
<
matrix
<
unsigned
char
>>
testing_images
;
std
::
vector
<
unsigned
long
>
testing_labels
;
load_mnist_dataset
(
argv
[
1
],
training_images
,
training_labels
,
testing_images
,
testing_labels
);
// Create a the same network as in dnn_mnist_ex, but use inception layer insteam of convolution
// in the middle
using
net_type
=
loss_multiclass_log
<
fc
<
10
,
relu
<
fc
<
84
,
relu
<
fc
<
120
,
max_pool
<
2
,
2
,
2
,
2
,
relu
<
inception
<
max_pool
<
2
,
2
,
2
,
2
,
relu
<
con
<
6
,
5
,
5
,
1
,
1
,
input
<
matrix
<
unsigned
char
>>
>>>>>>>>>>>>
;
// Create a network as defined above. This network will produce 10 outputs
// because that's how we defined net_type. However, fc layers can have the
// number of outputs they produce changed at runtime.
net_type
net
;
// the following training process is the same as in dnn_mnist_ex sample
// And then train it using the MNIST data. The code below uses mini-batch stochastic
// gradient descent with an initial learning rate of 0.01 to accomplish this.
dnn_trainer
<
net_type
>
trainer
(
net
);
trainer
.
set_learning_rate
(
0.01
);
trainer
.
set_min_learning_rate
(
0.00001
);
trainer
.
set_mini_batch_size
(
128
);
trainer
.
be_verbose
();
// Since DNN training can take a long time, we can ask the trainer to save its state to
// a file named "mnist_sync" every 20 seconds. This way, if we kill this program and
// start it again it will begin where it left off rather than restarting the training
// from scratch. This is because, when the program restarts, this call to
// set_synchronization_file() will automatically reload the settings from mnist_sync if
// the file exists.
trainer
.
set_synchronization_file
(
"mnist_sync"
,
std
::
chrono
::
seconds
(
20
));
// Finally, this line begins training. By default, it runs SGD with our specified
// learning rate until the loss stops decreasing. Then it reduces the learning rate by
// a factor of 10 and continues running until the loss stops decreasing again. It will
// keep doing this until the learning rate has dropped below the min learning rate
// defined above or the maximum number of epochs as been executed (defaulted to 10000).
trainer
.
train
(
training_images
,
training_labels
);
// At this point our net object should have learned how to classify MNIST images. But
// before we try it out let's save it to disk. Note that, since the trainer has been
// running images through the network, net will have a bunch of state in it related to
// the last batch of images it processed (e.g. outputs from each layer). Since we
// don't care about saving that kind of stuff to disk we can tell the network to forget
// about that kind of transient data so that our file will be smaller. We do this by
// "cleaning" the network before saving it.
net
.
clean
();
serialize
(
"mnist_network.dat"
)
<<
net
;
// Now if we later wanted to recall the network from disk we can simply say:
// deserialize("mnist_network.dat") >> net;
// Now let's run the training images through the network. This statement runs all the
// images through it and asks the loss layer to convert the network's raw output into
// labels. In our case, these labels are the numbers between 0 and 9.
std
::
vector
<
unsigned
long
>
predicted_labels
=
net
(
training_images
);
int
num_right
=
0
;
int
num_wrong
=
0
;
// And then let's see if it classified them correctly.
for
(
size_t
i
=
0
;
i
<
training_images
.
size
();
++
i
)
{
if
(
predicted_labels
[
i
]
==
training_labels
[
i
])
++
num_right
;
else
++
num_wrong
;
}
cout
<<
"training num_right: "
<<
num_right
<<
endl
;
cout
<<
"training num_wrong: "
<<
num_wrong
<<
endl
;
cout
<<
"training accuracy: "
<<
num_right
/
(
double
)(
num_right
+
num_wrong
)
<<
endl
;
// Let's also see if the network can correctly classify the testing images. Since
// MNIST is an easy dataset, we should see at least 99% accuracy.
predicted_labels
=
net
(
testing_images
);
num_right
=
0
;
num_wrong
=
0
;
for
(
size_t
i
=
0
;
i
<
testing_images
.
size
();
++
i
)
{
if
(
predicted_labels
[
i
]
==
testing_labels
[
i
])
++
num_right
;
else
++
num_wrong
;
}
cout
<<
"testing num_right: "
<<
num_right
<<
endl
;
cout
<<
"testing num_wrong: "
<<
num_wrong
<<
endl
;
cout
<<
"testing accuracy: "
<<
num_right
/
(
double
)(
num_right
+
num_wrong
)
<<
endl
;
}
catch
(
std
::
exception
&
e
)
{
cout
<<
e
.
what
()
<<
endl
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment