Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
dlib
Commits
1727efea
"...api/git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "f442955c6e871dcaf7d4003f74970e0905c2ff27"
Commit
1727efea
authored
Nov 04, 2012
by
Davis King
Browse files
updated docs
parent
655d3e1f
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
116 additions
and
7 deletions
+116
-7
docs/docs/ml.xml
docs/docs/ml.xml
+109
-7
docs/docs/term_index.xml
docs/docs/term_index.xml
+7
-0
No files found.
docs/docs/ml.xml
View file @
1727efea
...
@@ -118,13 +118,19 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -118,13 +118,19 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<item>
structural_graph_labeling_trainer
</item>
<item>
structural_graph_labeling_trainer
</item>
</section>
</section>
<section>
<section>
<name>
Unsupervised
</name>
<name>
Unsupervised Clustering
</name>
<item>
kkmeans
</item>
<item>
find_clusters_using_kmeans
</item>
<item>
newman_cluster
</item>
<item>
chinese_whispers
</item>
<item>
modularity
</item>
</section>
<section>
<name>
Unsupervised Miscellaneous
</name>
<item>
kcentroid
</item>
<item>
kcentroid
</item>
<item>
linearly_independent_subset_finder
</item>
<item>
linearly_independent_subset_finder
</item>
<item>
empirical_kernel_map
</item>
<item>
empirical_kernel_map
</item>
<item>
kkmeans
</item>
<item>
svm_one_class_trainer
</item>
<item>
svm_one_class_trainer
</item>
<item>
find_clusters_using_kmeans
</item>
<item>
vector_normalizer
</item>
<item>
vector_normalizer
</item>
<item>
vector_normalizer_pca
</item>
<item>
vector_normalizer_pca
</item>
<item>
sammon_projection
</item>
<item>
sammon_projection
</item>
...
@@ -149,6 +155,9 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -149,6 +155,9 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<item>
squared_euclidean_distance
</item>
<item>
squared_euclidean_distance
</item>
<item>
use_weights_of_one
</item>
<item>
use_weights_of_one
</item>
<item>
use_gaussian_weights
</item>
<item>
use_gaussian_weights
</item>
<item>
is_ordered_by_index
</item>
<item>
find_neighbor_ranges
</item>
<item>
convert_unordered_to_ordered
</item>
</sub>
</sub>
</item>
</item>
</section>
</section>
...
@@ -342,6 +351,46 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -342,6 +351,46 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
is_ordered_by_index
</name>
<file>
dlib/manifold_regularization.h
</file>
<spec_file
link=
"true"
>
dlib/manifold_regularization/graph_creation_abstract.h
</spec_file>
<description>
This function checks if a vector of
<a
href=
"#sample_pair"
>
sample_pair
</a>
or
<a
href=
"#ordered_sample_pair"
>
ordered_sample_pair
</a>
objects is in sorted
order according to their index values.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
convert_unordered_to_ordered
</name>
<file>
dlib/manifold_regularization.h
</file>
<spec_file
link=
"true"
>
dlib/manifold_regularization/graph_creation_abstract.h
</spec_file>
<description>
This function takes a graph, defined by a vector of
<a
href=
"#sample_pair"
>
sample_pair
</a>
objects and converts it into the equivalent
graph defined by a vector of
<a
href=
"#ordered_sample_pair"
>
ordered_sample_pair
</a>
objects.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
find_neighbor_ranges
</name>
<file>
dlib/manifold_regularization.h
</file>
<spec_file
link=
"true"
>
dlib/manifold_regularization/graph_creation_abstract.h
</spec_file>
<description>
This function takes a graph, defined by a vector of
<a
href=
"#ordered_sample_pair"
>
ordered_sample_pair
</a>
objects, and finds the
ranges that contain the edges for each node in the graph. The output therefore
lets you easily locate the neighbors of any node in the graph.
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
@@ -458,10 +507,63 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -458,10 +507,63 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<name>
modularity
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/clustering/modularity_clustering_abstract.h
</spec_file>
<description>
This function computes the modularity of a particular graph clustering. This
is a number that tells you how good the clustering is. In particular, it
is the measure optimized by the
<a
href=
"#newman_cluster"
>
newman_cluster
</a>
routine.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
newman_cluster
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/clustering/modularity_clustering_abstract.h
</spec_file>
<description>
This function performs the clustering algorithm described in the paper
<blockquote>
Modularity and community structure in networks by M. E. J. Newman.
</blockquote>
In particular, this is a method for automatically clustering the nodes in a
graph into groups. The method is able to automatically determine the number
of clusters and does not have any parameters. In general, it is a very good
clustering technique.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
chinese_whispers
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/clustering/chinese_whispers_abstract.h
</spec_file>
<description>
This function performs the clustering algorithm described in the paper
<blockquote>
Chinese Whispers - an Efficient Graph Clustering Algorithm and its
Application to Natural Language Processing Problems by Chris Biemann.
</blockquote>
In particular, this is a method for automatically clustering the nodes in a
graph into groups. The method is able to automatically determine the number
of clusters.
<p>
It should be noted that this method is generally not going to work as
well as
<a
href=
"#newman_cluster"
>
Newman clustering
</a>
. However, Chinese
Whispers is very fast.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<component>
<name>
find_clusters_using_kmeans
</name>
<name>
find_clusters_using_kmeans
</name>
<file>
dlib/
svm
.h
</file>
<file>
dlib/
clustering
.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
<description>
This is just a simple linear kmeans clustering implementation.
This is just a simple linear kmeans clustering implementation.
...
@@ -473,7 +575,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -473,7 +575,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<component>
<component>
<name>
pick_initial_centers
</name>
<name>
pick_initial_centers
</name>
<file>
dlib/
svm
.h
</file>
<file>
dlib/
clustering
.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
<description>
This is a function that you can use to seed data clustering algorithms
This is a function that you can use to seed data clustering algorithms
...
@@ -641,7 +743,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
...
@@ -641,7 +743,7 @@ Davis E. King. <a href="http://www.jmlr.org/papers/volume10/king09a/king09a.pdf"
<component>
<component>
<name>
kkmeans
</name>
<name>
kkmeans
</name>
<file>
dlib/
svm
.h
</file>
<file>
dlib/
clustering
.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
<description>
This is an implementation of a kernelized k-means clustering algorithm.
This is an implementation of a kernelized k-means clustering algorithm.
...
...
docs/docs/term_index.xml
View file @
1727efea
...
@@ -227,6 +227,9 @@
...
@@ -227,6 +227,9 @@
<term
file=
"ml.html"
name=
"find_k_nearest_neighbors"
/>
<term
file=
"ml.html"
name=
"find_k_nearest_neighbors"
/>
<term
file=
"ml.html"
name=
"remove_short_edges"
/>
<term
file=
"ml.html"
name=
"remove_short_edges"
/>
<term
file=
"ml.html"
name=
"remove_duplicate_edges"
/>
<term
file=
"ml.html"
name=
"remove_duplicate_edges"
/>
<term
file=
"ml.html"
name=
"is_ordered_by_index"
/>
<term
file=
"ml.html"
name=
"convert_unordered_to_ordered"
/>
<term
file=
"ml.html"
name=
"find_neighbor_ranges"
/>
<term
file=
"ml.html"
name=
"remove_long_edges"
/>
<term
file=
"ml.html"
name=
"remove_long_edges"
/>
<term
file=
"ml.html"
name=
"remove_percent_longest_edges"
/>
<term
file=
"ml.html"
name=
"remove_percent_longest_edges"
/>
<term
file=
"ml.html"
name=
"remove_percent_shortest_edges"
/>
<term
file=
"ml.html"
name=
"remove_percent_shortest_edges"
/>
...
@@ -236,6 +239,7 @@
...
@@ -236,6 +239,7 @@
<term
link=
"dlib/manifold_regularization/graph_creation_abstract.h.html#max_index_plus_one"
name=
"for graphs"
/>
<term
link=
"dlib/manifold_regularization/graph_creation_abstract.h.html#max_index_plus_one"
name=
"for graphs"
/>
<term
link=
"dlib/svm/sparse_vector_abstract.h.html#max_index_plus_one"
name=
"for sparse vectors"
/>
<term
link=
"dlib/svm/sparse_vector_abstract.h.html#max_index_plus_one"
name=
"for sparse vectors"
/>
</term>
</term>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"sparse_matrix_vector_multiply"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"add_to"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"add_to"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"subtract_from"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"subtract_from"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"assign"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"assign"
/>
...
@@ -308,6 +312,9 @@
...
@@ -308,6 +312,9 @@
<term
file=
"dlib/statistics/dpca_abstract.h.html"
name=
"discriminant_pca_error"
/>
<term
file=
"dlib/statistics/dpca_abstract.h.html"
name=
"discriminant_pca_error"
/>
<term
file=
"ml.html"
name=
"kkmeans"
/>
<term
file=
"ml.html"
name=
"kkmeans"
/>
<term
file=
"ml.html"
name=
"find_clusters_using_kmeans"
/>
<term
file=
"ml.html"
name=
"find_clusters_using_kmeans"
/>
<term
file=
"ml.html"
name=
"newman_cluster"
/>
<term
file=
"ml.html"
name=
"chinese_whispers"
/>
<term
file=
"ml.html"
name=
"modularity"
/>
<term
file=
"ml.html"
name=
"pick_initial_centers"
/>
<term
file=
"ml.html"
name=
"pick_initial_centers"
/>
<term
file=
"ml.html"
name=
"rank_features"
/>
<term
file=
"ml.html"
name=
"rank_features"
/>
<term
file=
"ml.html"
name=
"find_gamma_with_big_centroid_gap"
/>
<term
file=
"ml.html"
name=
"find_gamma_with_big_centroid_gap"
/>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment