# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import unittest import torch from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel from diffusers import FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel from diffusers.utils.testing_utils import floats_tensor, require_peft_backend sys.path.append(".") from utils import PeftLoraLoaderMixinTests # noqa: E402 @require_peft_backend class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = FluxPipeline scheduler_cls = FlowMatchEulerDiscreteScheduler() scheduler_kwargs = {} uses_flow_matching = True transformer_kwargs = { "patch_size": 1, "in_channels": 4, "num_layers": 1, "num_single_layers": 1, "attention_head_dim": 16, "num_attention_heads": 2, "joint_attention_dim": 32, "pooled_projection_dim": 32, "axes_dims_rope": [4, 4, 8], } transformer_cls = FluxTransformer2DModel vae_kwargs = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "block_out_channels": (4,), "layers_per_block": 1, "latent_channels": 1, "norm_num_groups": 1, "use_quant_conv": False, "use_post_quant_conv": False, "shift_factor": 0.0609, "scaling_factor": 1.5035, } has_two_text_encoders = True tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2" tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2" text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" @property def output_shape(self): return (1, 8, 8, 3) def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 10 num_channels = 4 sizes = (32, 32) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "A painting of a squirrel eating a burger", "num_inference_steps": 4, "guidance_scale": 0.0, "height": 8, "width": 8, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs