# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer torch.backends.cuda.matmul.allow_tf32 = False class UnCLIPPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_prior(self): torch.manual_seed(0) model_kwargs = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } model = PriorTransformer(**model_kwargs) return model @property def dummy_text_proj(self): torch.manual_seed(0) model_kwargs = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } model = UnCLIPTextProjModel(**model_kwargs) return model @property def dummy_decoder(self): torch.manual_seed(0) model_kwargs = { "sample_size": 64, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_super_res_kwargs(self): return { "sample_size": 128, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "in_channels": 6, "out_channels": 3, } @property def dummy_super_res_first(self): torch.manual_seed(0) model = UNet2DModel(**self.dummy_super_res_kwargs) return model @property def dummy_super_res_last(self): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1) model = UNet2DModel(**self.dummy_super_res_kwargs) return model def test_unclip(self): device = "cpu" prior = self.dummy_prior decoder = self.dummy_decoder text_proj = self.dummy_text_proj text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer super_res_first = self.dummy_super_res_first super_res_last = self.dummy_super_res_last prior_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="sample", num_train_timesteps=1000, clip_sample_range=5.0, ) decoder_scheduler = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) super_res_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) pipe = UnCLIPPipeline( prior=prior, decoder=decoder, text_proj=text_proj, text_encoder=text_encoder, tokenizer=tokenizer, super_res_first=super_res_first, super_res_last=super_res_last, prior_scheduler=prior_scheduler, decoder_scheduler=decoder_scheduler, super_res_scheduler=super_res_scheduler, ) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) prompt = "horse" generator = torch.Generator(device=device).manual_seed(0) output = pipe( [prompt], generator=generator, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, output_type="np", ) image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = pipe( [prompt], generator=generator, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array( [ 0.0011, 0.0002, 0.9962, 0.9940, 0.0002, 0.9997, 0.0003, 0.9987, 0.9989, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class UnCLIPPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_unclip_karlo(self): expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_horse_fp16.npy" ) pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(0) output = pipeline( "horse", num_images_per_prompt=1, generator=generator, output_type="np", ) image = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 1e-2 def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() generator = torch.Generator(device=torch_device).manual_seed(0) _ = pipe( "horse", num_images_per_prompt=1, generator=generator, prior_num_inference_steps=2, decoder_num_inference_steps=2, super_res_num_inference_steps=2, output_type="np", ) mem_bytes = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9