# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from diffusers import OnnxStableDiffusionPipeline from diffusers.utils.testing_utils import require_onnxruntime, slow from ...test_pipelines_onnx_common import OnnxPipelineTesterMixin class OnnxStableDiffusionPipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): # FIXME: add fast tests pass @slow @require_onnxruntime class OnnxStableDiffusionPipelineIntegrationTests(unittest.TestCase): def test_inference(self): sd_pipe = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider" ) prompt = "A painting of a squirrel eating a burger" np.random.seed(0) output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=5, output_type="np") image = output.images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def test_intermediate_state(self): number_of_steps = 0 def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None: test_callback_fn.has_been_called = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.5950, -0.3039, -1.1672, 0.1594, -1.1572, 0.6719, -1.9712, -0.0403, 0.9592] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) latents_slice = latents[0, -3:, -3:, -1] expected_slice = np.array( [-0.4776, -0.0119, -0.8519, -0.0275, -0.9764, 0.9820, -0.3843, 0.3788, 1.2264] ) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3 test_callback_fn.has_been_called = False pipe = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=None) prompt = "Andromeda galaxy in a bottle" np.random.seed(0) pipe(prompt=prompt, num_inference_steps=5, guidance_scale=7.5, callback=test_callback_fn, callback_steps=1) assert test_callback_fn.has_been_called assert number_of_steps == 6