# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import load_image, require_torch_gpu from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) torch.backends.cuda.matmul.allow_tf32 = False class UnCLIPImageVariationPipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def text_embedder_hidden_size(self): return 32 @property def time_input_dim(self): return 32 @property def block_out_channels_0(self): return self.time_input_dim @property def time_embed_dim(self): return self.time_input_dim * 4 @property def cross_attention_dim(self): return 100 @property def dummy_tokenizer(self): tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") return tokenizer @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(config) @property def dummy_image_encoder(self): torch.manual_seed(0) config = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) return CLIPVisionModelWithProjection(config) @property def dummy_text_proj(self): torch.manual_seed(0) model_kwargs = { "clip_embeddings_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "cross_attention_dim": self.cross_attention_dim, } model = UnCLIPTextProjModel(**model_kwargs) return model @property def dummy_decoder(self): torch.manual_seed(0) model_kwargs = { "sample_size": 64, # RGB in channels "in_channels": 3, # Out channels is double in channels because predicts mean and variance "out_channels": 6, "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "layers_per_block": 1, "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": "identity", } model = UNet2DConditionModel(**model_kwargs) return model @property def dummy_super_res_kwargs(self): return { "sample_size": 128, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2), "in_channels": 6, "out_channels": 3, } @property def dummy_super_res_first(self): torch.manual_seed(0) model = UNet2DModel(**self.dummy_super_res_kwargs) return model @property def dummy_super_res_last(self): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1) model = UNet2DModel(**self.dummy_super_res_kwargs) return model def get_pipeline(self, device): decoder = self.dummy_decoder text_proj = self.dummy_text_proj text_encoder = self.dummy_text_encoder tokenizer = self.dummy_tokenizer super_res_first = self.dummy_super_res_first super_res_last = self.dummy_super_res_last decoder_scheduler = UnCLIPScheduler( variance_type="learned_range", prediction_type="epsilon", num_train_timesteps=1000, ) super_res_scheduler = UnCLIPScheduler( variance_type="fixed_small_log", prediction_type="epsilon", num_train_timesteps=1000, ) feature_extractor = CLIPImageProcessor(crop_size=32, size=32) image_encoder = self.dummy_image_encoder pipe = UnCLIPImageVariationPipeline( decoder=decoder, text_encoder=text_encoder, tokenizer=tokenizer, text_proj=text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=super_res_first, super_res_last=super_res_last, decoder_scheduler=decoder_scheduler, super_res_scheduler=super_res_scheduler, ) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) return pipe def get_pipeline_inputs(self, device, seed, pil_image=False): input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) generator = torch.Generator(device=device).manual_seed(seed) if pil_image: input_image = input_image * 0.5 + 0.5 input_image = input_image.clamp(0, 1) input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy() input_image = DiffusionPipeline.numpy_to_pil(input_image)[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def test_unclip_image_variation_input_tensor(self): device = "cpu" seed = 0 pipe = self.get_pipeline(device) pipeline_inputs = self.get_pipeline_inputs(device, seed) output = pipe(**pipeline_inputs) image = output.images tuple_pipeline_inputs = self.get_pipeline_inputs(device, seed) image_from_tuple = pipe( **tuple_pipeline_inputs, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array( [ 0.9988, 0.9997, 0.9944, 0.0003, 0.0003, 0.9974, 0.0003, 0.0004, 0.9931, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_image_variation_input_image(self): device = "cpu" seed = 0 pipe = self.get_pipeline(device) pipeline_inputs = self.get_pipeline_inputs(device, seed, pil_image=True) output = pipe(**pipeline_inputs) image = output.images tuple_pipeline_inputs = self.get_pipeline_inputs(device, seed, pil_image=True) image_from_tuple = pipe( **tuple_pipeline_inputs, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) expected_slice = np.array( [ 0.9988, 0.9997, 0.9944, 0.0003, 0.0003, 0.9974, 0.0003, 0.0004, 0.9931, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_image_variation_input_list_images(self): device = "cpu" seed = 0 pipe = self.get_pipeline(device) pipeline_inputs = self.get_pipeline_inputs(device, seed, pil_image=True) pipeline_inputs["image"] = [ pipeline_inputs["image"], pipeline_inputs["image"], ] output = pipe(**pipeline_inputs) image = output.images tuple_pipeline_inputs = self.get_pipeline_inputs(device, seed, pil_image=True) tuple_pipeline_inputs["image"] = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] image_from_tuple = pipe( **tuple_pipeline_inputs, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 128, 128, 3) expected_slice = np.array( [ 0.9997, 0.9997, 0.0003, 0.0003, 0.9950, 0.0003, 0.9993, 0.9957, 0.0004, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_image_variation_input_num_images_per_prompt(self): device = "cpu" seed = 0 pipe = self.get_pipeline(device) pipeline_inputs = self.get_pipeline_inputs(device, seed, pil_image=True) pipeline_inputs["image"] = [ pipeline_inputs["image"], pipeline_inputs["image"], ] output = pipe(**pipeline_inputs, num_images_per_prompt=2) image = output.images tuple_pipeline_inputs = self.get_pipeline_inputs(device, seed, pil_image=True) tuple_pipeline_inputs["image"] = [ tuple_pipeline_inputs["image"], tuple_pipeline_inputs["image"], ] image_from_tuple = pipe( **tuple_pipeline_inputs, num_images_per_prompt=2, return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (4, 128, 128, 3) expected_slice = np.array( [ 0.9997, 0.9997, 0.0008, 0.9952, 0.9980, 0.9997, 0.9961, 0.9997, 0.9995, ] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_unclip_passed_image_embed(self): device = torch.device("cpu") seed = 0 class DummyScheduler: init_noise_sigma = 1 pipe = self.get_pipeline(device) generator = torch.Generator(device=device).manual_seed(0) dtype = pipe.decoder.dtype batch_size = 1 shape = (batch_size, pipe.decoder.in_channels, pipe.decoder.sample_size, pipe.decoder.sample_size) decoder_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) shape = ( batch_size, pipe.super_res_first.in_channels // 2, pipe.super_res_first.sample_size, pipe.super_res_first.sample_size, ) super_res_latents = pipe.prepare_latents( shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler() ) pipeline_inputs = self.get_pipeline_inputs(device, seed) img_out_1 = pipe( **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents ).images pipeline_inputs = self.get_pipeline_inputs(device, seed) # Don't pass image, instead pass embedding image = pipeline_inputs.pop("image") image_embeddings = pipe.image_encoder(image).image_embeds img_out_2 = pipe( **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents, image_embeddings=image_embeddings, ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_1 - img_out_2).max() < 1e-4 @slow @require_torch_gpu class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_unclip_image_variation_karlo(self): input_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png" ) expected_image = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/unclip/karlo_v1_alpha_cat_variation_fp16.npy" ) pipeline = UnCLIPImageVariationPipeline.from_pretrained( "fusing/karlo-image-variations-diffusers", torch_dtype=torch.float16 ) pipeline = pipeline.to(torch_device) pipeline.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) output = pipeline( input_image, generator=generator, output_type="np", ) image = np.asarray(pipeline.numpy_to_pil(output.images)[0], dtype=np.float32) expected_image = np.asarray(pipeline.numpy_to_pil(expected_image)[0], dtype=np.float32) # Karlo is extremely likely to strongly deviate depending on which hardware is used # Here we just check that the image doesn't deviate more than 10 pixels from the reference image on average avg_diff = np.abs(image - expected_image).mean() assert avg_diff < 10, f"Error image deviates {avg_diff} pixels on average" assert image.shape == (256, 256, 3)