Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
diffusers
Commits
10798663
Unverified
Commit
10798663
authored
Jul 04, 2022
by
Anton Lozhkov
Committed by
GitHub
Jul 04, 2022
Browse files
Fix attention for Glide (#75)
parent
d9316bf8
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
10 additions
and
5 deletions
+10
-5
src/diffusers/models/attention.py
src/diffusers/models/attention.py
+9
-4
src/diffusers/models/unet_grad_tts.py
src/diffusers/models/unet_grad_tts.py
+1
-1
No files found.
src/diffusers/models/attention.py
View file @
10798663
...
@@ -73,6 +73,8 @@ class AttentionBlock(nn.Module):
...
@@ -73,6 +73,8 @@ class AttentionBlock(nn.Module):
self
.
proj
=
zero_module
(
nn
.
Conv1d
(
channels
,
channels
,
1
))
self
.
proj
=
zero_module
(
nn
.
Conv1d
(
channels
,
channels
,
1
))
self
.
overwrite_qkv
=
overwrite_qkv
self
.
overwrite_qkv
=
overwrite_qkv
self
.
overwrite_linear
=
overwrite_linear
if
overwrite_qkv
:
if
overwrite_qkv
:
in_channels
=
channels
in_channels
=
channels
self
.
norm
=
nn
.
GroupNorm
(
num_channels
=
channels
,
num_groups
=
num_groups
,
eps
=
1e-6
)
self
.
norm
=
nn
.
GroupNorm
(
num_channels
=
channels
,
num_groups
=
num_groups
,
eps
=
1e-6
)
...
@@ -80,9 +82,7 @@ class AttentionBlock(nn.Module):
...
@@ -80,9 +82,7 @@ class AttentionBlock(nn.Module):
self
.
k
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
k
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
v
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
v
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
proj_out
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
self
.
proj_out
=
torch
.
nn
.
Conv2d
(
in_channels
,
in_channels
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
)
elif
self
.
overwrite_linear
:
self
.
overwrite_linear
=
overwrite_linear
if
self
.
overwrite_linear
:
num_groups
=
min
(
channels
//
4
,
32
)
num_groups
=
min
(
channels
//
4
,
32
)
self
.
norm
=
nn
.
GroupNorm
(
num_channels
=
channels
,
num_groups
=
num_groups
,
eps
=
1e-6
)
self
.
norm
=
nn
.
GroupNorm
(
num_channels
=
channels
,
num_groups
=
num_groups
,
eps
=
1e-6
)
self
.
NIN_0
=
NIN
(
channels
,
channels
)
self
.
NIN_0
=
NIN
(
channels
,
channels
)
...
@@ -91,6 +91,8 @@ class AttentionBlock(nn.Module):
...
@@ -91,6 +91,8 @@ class AttentionBlock(nn.Module):
self
.
NIN_3
=
NIN
(
channels
,
channels
)
self
.
NIN_3
=
NIN
(
channels
,
channels
)
self
.
GroupNorm_0
=
nn
.
GroupNorm
(
num_groups
=
num_groups
,
num_channels
=
channels
,
eps
=
1e-6
)
self
.
GroupNorm_0
=
nn
.
GroupNorm
(
num_groups
=
num_groups
,
num_channels
=
channels
,
eps
=
1e-6
)
else
:
self
.
proj_out
=
zero_module
(
nn
.
Conv1d
(
channels
,
channels
,
1
))
self
.
is_overwritten
=
False
self
.
is_overwritten
=
False
...
@@ -120,9 +122,12 @@ class AttentionBlock(nn.Module):
...
@@ -120,9 +122,12 @@ class AttentionBlock(nn.Module):
self
.
norm
.
weight
.
data
=
self
.
GroupNorm_0
.
weight
.
data
self
.
norm
.
weight
.
data
=
self
.
GroupNorm_0
.
weight
.
data
self
.
norm
.
bias
.
data
=
self
.
GroupNorm_0
.
bias
.
data
self
.
norm
.
bias
.
data
=
self
.
GroupNorm_0
.
bias
.
data
else
:
self
.
proj
.
weight
.
data
=
module
.
proj_out
.
weight
.
data
self
.
proj
.
bias
.
data
=
module
.
proj_out
.
bias
.
data
def
forward
(
self
,
x
,
encoder_out
=
None
):
def
forward
(
self
,
x
,
encoder_out
=
None
):
if
(
self
.
overwrite_qkv
or
self
.
overwrite_linear
)
and
not
self
.
is_overwritten
:
if
not
self
.
is_overwritten
:
self
.
set_weights
(
self
)
self
.
set_weights
(
self
)
self
.
is_overwritten
=
True
self
.
is_overwritten
=
True
...
...
src/diffusers/models/unet_grad_tts.py
View file @
10798663
...
@@ -133,7 +133,7 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
...
@@ -133,7 +133,7 @@ class UNetGradTTSModel(ModelMixin, ConfigMixin):
overwrite_for_grad_tts
=
True
,
overwrite_for_grad_tts
=
True
,
)
)
# self.mid = UNetMidBlock2D
# self.mid = UNetMidBlock2D
for
ind
,
(
dim_in
,
dim_out
)
in
enumerate
(
reversed
(
in_out
[
1
:])):
for
ind
,
(
dim_in
,
dim_out
)
in
enumerate
(
reversed
(
in_out
[
1
:])):
self
.
ups
.
append
(
self
.
ups
.
append
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment