## How to load ogb data To load ogb dataset, you need to run the following command, which will output a network file, ogbl-collab-net.txt: ``` python3 load_dataset.py --name ogbl-collab ``` ## Evaluation For evaluatation we follow the code provided by ogb [here](https://github.com/snap-stanford/ogb/blob/master/examples/linkproppred/collab/mlp.py). ## Used config ogbl-collab ``` python3 deepwalk.py --data_file ogbl-collab-net.txt --save_in_pt --output_emb_file embedding.pt --num_walks 50 --window_size 20 --walk_length 40 --lr 0.1 --negative 1 --neg_weight 1 --lap_norm 0.005 --mix --adam --gpus 0 1 2 3 --num_threads 4 --print_interval 2000 --print_loss --batch_size 32 cd ./ogb/blob/master/examples/linkproppred/collab/ cp embedding_pt_file_path ./ python3 mlp.py --device 0 --runs 10 --use_node_embedding ``` ogbl-ddi ``` python3 deepwalk.py --data_file ogbl-ddi-net.txt --save_in_pt --output_emb_file ddi-embedding.pt --num_walks 50 --window_size 2 --walk_length 80 --lr 0.1 --negative 1 --neg_weight 1 --lap_norm 0.05 --only_gpu --adam --gpus 0 --num_threads 4 --print_interval 2000 --print_loss --batch_size 16 --use_context_weight cd ./ogb/blob/master/examples/linkproppred/ddi/ cp embedding_pt_file_path ./ python3 mlp.py --device 0 --runs 5 ``` ## Score ogbl-collab
Hits@10
 Highest Train: 74.83 ± 4.79
 Highest Valid: 40.03 ± 2.98
  Final Train: 74.51 ± 4.92
  Final Test: 31.13 ± 2.47
Hits@50
 Highest Train: 98.83 ± 0.15
 Highest Valid: 60.61 ± 0.32
  Final Train: 98.74 ± 0.17
  Final Test: 50.37 ± 0.34
Hits@100
 Highest Train: 99.86 ± 0.04
 Highest Valid: 66.64 ± 0.32
  Final Train: 99.84 ± 0.06
  Final Test: 56.88 ± 0.37
obgl-ddi
Hits@10
 Highest Train: 35.05 ± 3.68
 Highest Valid: 31.72 ± 3.52
  Final Train: 35.05 ± 3.68
  Final Test: 12.68 ± 3.19
Hits@20
 Highest Train: 44.85 ± 1.26
 Highest Valid: 41.20 ± 1.41
  Final Train: 44.85 ± 1.26
  Final Test: 21.69 ± 3.14
Hits@30
 Highest Train: 52.28 ± 1.21
 Highest Valid: 48.49 ± 1.09
  Final Train: 52.28 ± 1.21
  Final Test: 29.13 ± 3.46