from dgl.nn.pytorch import GraphConv import torch import torch.nn as nn import torch.nn.functional as F class VGAEModel(nn.Module): def __init__(self, in_dim, hidden1_dim, hidden2_dim): super(VGAEModel, self).__init__() self.in_dim = in_dim self.hidden1_dim = hidden1_dim self.hidden2_dim = hidden2_dim layers = [GraphConv(self.in_dim, self.hidden1_dim, activation=F.relu, allow_zero_in_degree=True), GraphConv(self.hidden1_dim, self.hidden2_dim, activation=lambda x: x, allow_zero_in_degree=True), GraphConv(self.hidden1_dim, self.hidden2_dim, activation=lambda x: x, allow_zero_in_degree=True)] self.layers = nn.ModuleList(layers) def encoder(self, g, features): h = self.layers[0](g, features) self.mean = self.layers[1](g, h) self.log_std = self.layers[2](g, h) gaussian_noise = torch.randn(features.size(0), self.hidden2_dim) sampled_z = self.mean + gaussian_noise * torch.exp(self.log_std) return sampled_z def decoder(self, z): adj_rec = torch.sigmoid(torch.matmul(z, z.t())) return adj_rec def forward(self, g, features): z = self.encoder(g, features) adj_rec = self.decoder(z) return adj_rec