# Variational Graph Auto-Encoders - Paper link:https://arxiv.org/abs/1611.07308 - Author's code repo:https://github.com/tkipf/gae ## Requirements - Pytorch - Python 3.x - DGL 0.6 - scikit-learn ## Run the demo Run with following (available dataset: "cora", "citeseer", "pubmed") ``` python train.py ``` ## Dataset In this example, I use two kinds of data source. One from DGL's bulit-in dataset (CoraGraphDataset, CiteseerGraphDataset and PubmedGraphDataset), another from website https://github.com/kimiyoung/planetoid. You can specify a dataset as follows: ``` python train.py --datasrc dgl --dataset cora // from DGL python train.py --datasrc website --dataset cora // from website ``` **Note**: If you want to train by dataset from website, you should download folder https://github.com/kimiyoung/planetoid/tree/master/data. Then put it under project folder. ## Results Use *area under the ROC curve* (AUC) and *average precision* (AP) scores for each model on the test set. Numbers show mean results and standard error for 10 runs with random initializations on fixed dataset splits. ### Dataset from DGL | Dataset | AUC | AP | | -------- | -------------- | ------------- | | Cora | 91.8$\pm$ 0.01 | 92.5$\pm$0.01 | | Citeseer | 89.2$\pm$0.02 | 90.8$\pm$0.01 | | Pubmed | 94.5$\pm$0.01 | 94.6$\pm$0.01 | ### Dataset from website | Dataset | AUC | AP | | -------- | -------------- | -------------- | | Cora | 90.9$\pm$ 0.01 | 92.1$\pm$0.01 | | Citeseer | 90.3$\pm$0.01 | 91.8$\pm$0.01 | | Pubmed | 94.4$\pm$ 0.01 | 94.6$\pm$ 0.01 | ### Reported results in paper | Dataset | AUC | AP | | -------- | -------------- | ------------- | | Cora | 91.4$\pm$ 0.01 | 92.6$\pm$0.01 | | Citeseer | 90.8$\pm$0.02 | 92.0$\pm$0.02 | | Pubmed | 94.4$\pm$0.02 | 94.7$\pm$0.02 |