cmake_minimum_required(VERSION 3.18) project(graphbolt C CXX) set (CMAKE_CXX_STANDARD 17) if(USE_CUDA) message(STATUS "Build graphbolt with CUDA support") enable_language(CUDA) add_definitions(-DGRAPHBOLT_USE_CUDA) endif() # For windows, define NOMINMAX to avoid conflict with std::min/max if(MSVC) add_definitions(-DNOMINMAX) endif() # Find PyTorch cmake files and PyTorch versions with the python interpreter # $PYTHON_INTERP ("python3" or "python" if empty) if(NOT PYTHON_INTERP) find_program(PYTHON_INTERP NAMES python3 python) endif() message(STATUS "Using Python interpreter: ${PYTHON_INTERP}") file(TO_NATIVE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/find_cmake.py FIND_CMAKE_PY) execute_process( COMMAND ${PYTHON_INTERP} ${FIND_CMAKE_PY} OUTPUT_VARIABLE TORCH_PREFIX_VER OUTPUT_STRIP_TRAILING_WHITESPACE ) message(STATUS "find_cmake.py output: ${TORCH_PREFIX_VER}") list(GET TORCH_PREFIX_VER 0 TORCH_PREFIX) list(GET TORCH_PREFIX_VER 1 TORCH_VER) message(STATUS "Configuring for PyTorch ${TORCH_VER}") string(REPLACE "." ";" TORCH_VERSION_LIST ${TORCH_VER}) set(Torch_DIR "${TORCH_PREFIX}/Torch") message(STATUS "Setting directory to ${Torch_DIR}") find_package(Torch REQUIRED) set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${TORCH_C_FLAGS}") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}") set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -g3 -ggdb") set(LIB_GRAPHBOLT_NAME "graphbolt_pytorch_${TORCH_VER}") set(BOLT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/src") set(BOLT_INCLUDE "${CMAKE_CURRENT_SOURCE_DIR}/include") file(GLOB BOLT_HEADERS ${BOLT_INCLUDE}) file(GLOB BOLT_SRC ${BOLT_DIR}/*.cc) if(USE_CUDA) file(GLOB BOLT_CUDA_SRC ${BOLT_DIR}/cuda/*.cu ${BOLT_DIR}/cuda/*.cc ) list(APPEND BOLT_SRC ${BOLT_CUDA_SRC}) if(DEFINED ENV{CUDAARCHS}) set(CMAKE_CUDA_ARCHITECTURES $ENV{CUDAARCHS}) endif() endif() add_library(${LIB_GRAPHBOLT_NAME} SHARED ${BOLT_SRC} ${BOLT_HEADERS}) target_include_directories(${LIB_GRAPHBOLT_NAME} PRIVATE ${BOLT_DIR} ${BOLT_HEADERS} "../third_party/dmlc-core/include" "../third_party/pcg/include") target_link_libraries(${LIB_GRAPHBOLT_NAME} "${TORCH_LIBRARIES}") if(USE_CUDA) set_target_properties(${LIB_GRAPHBOLT_NAME} PROPERTIES CUDA_STANDARD 17) message(STATUS "Use external CCCL library for a consistent API and performance for graphbolt.") target_compile_definitions(${LIB_GRAPHBOLT_NAME} PRIVATE CUB_WRAPPED_NAMESPACE=graphbolt) target_compile_definitions(${LIB_GRAPHBOLT_NAME} PRIVATE THRUST_NS_QUALIFIER=thrust) target_include_directories(${LIB_GRAPHBOLT_NAME} PRIVATE "../third_party/cccl/thrust" "../third_party/cccl/cub" "../third_party/cccl/libcudacxx/include") message(STATUS "Use HugeCTR gpu_cache for graphbolt with INCLUDE_DIRS $ENV{GPU_CACHE_INCLUDE_DIRS}.") target_include_directories(${LIB_GRAPHBOLT_NAME} PRIVATE $ENV{GPU_CACHE_INCLUDE_DIRS}) target_link_directories(${LIB_GRAPHBOLT_NAME} PRIVATE ${GPU_CACHE_BUILD_DIR}) target_link_libraries(${LIB_GRAPHBOLT_NAME} gpu_cache) get_property(archs TARGET ${LIB_GRAPHBOLT_NAME} PROPERTY CUDA_ARCHITECTURES) message(STATUS "CUDA_ARCHITECTURES for graphbolt: ${archs}") endif() # The Torch CMake configuration only sets up the path for the MKL library when # using the conda distribution. The following is a workaround to address this # when using a standalone installation of MKL. if(DEFINED MKL_LIBRARIES) target_link_directories(${LIB_GRAPHBOLT_NAME} PRIVATE ${MKL_ROOT}/lib/${MKL_ARCH}) endif()