# DGL & Pytorch implementation of Enhanced Graph Embedding with Side information (EGES) ## Version dgl==0.6.1, torch==1.9.0 ## Paper Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba: https://arxiv.org/pdf/1803.02349.pdf https://arxiv.org/abs/1803.02349 ## How to run Create folder named `data`. Download two csv files from [here](https://github.com/Wang-Yu-Qing/dgl_data/tree/master/eges_data) into the `data` folder. Run command: `python main.py` with default configuration, and the following message will shown up: ``` Using backend: pytorch Num skus: 33344, num brands: 3662, num shops: 4785, num cates: 79 Epoch 00000 | Step 00000 | Step Loss 0.9117 | Epoch Avg Loss: 0.9117 Epoch 00000 | Step 00100 | Step Loss 0.8736 | Epoch Avg Loss: 0.8801 Epoch 00000 | Step 00200 | Step Loss 0.8975 | Epoch Avg Loss: 0.8785 Evaluate link prediction AUC: 0.6864 Epoch 00001 | Step 00000 | Step Loss 0.8695 | Epoch Avg Loss: 0.8695 Epoch 00001 | Step 00100 | Step Loss 0.8290 | Epoch Avg Loss: 0.8643 Epoch 00001 | Step 00200 | Step Loss 0.8012 | Epoch Avg Loss: 0.8604 Evaluate link prediction AUC: 0.6875 ... Epoch 00029 | Step 00000 | Step Loss 0.7095 | Epoch Avg Loss: 0.7095 Epoch 00029 | Step 00100 | Step Loss 0.7248 | Epoch Avg Loss: 0.7139 Epoch 00029 | Step 00200 | Step Loss 0.7123 | Epoch Avg Loss: 0.7134 Evaluate link prediction AUC: 0.7084 ``` The AUC of link-prediction task on test graph is computed after each epoch is done. ## Reference https://github.com/nonva/eges https://github.com/wangzhegeek/EGES.git