""" Graph Representation Learning via Hard Attention Networks in DGL using Adam optimization. References ---------- Paper: https://arxiv.org/abs/1907.04652 """ import argparse import time import numpy as np import torch import torch.nn.functional as F from hgao import HardGAT from utils import EarlyStopping import dgl from dgl.data import ( CiteseerGraphDataset, CoraGraphDataset, PubmedGraphDataset, register_data_args, ) def accuracy(logits, labels): _, indices = torch.max(logits, dim=1) correct = torch.sum(indices == labels) return correct.item() * 1.0 / len(labels) def evaluate(model, features, labels, mask): model.eval() with torch.no_grad(): logits = model(features) logits = logits[mask] labels = labels[mask] return accuracy(logits, labels) def main(args): # load and preprocess dataset if args.dataset == "cora": data = CoraGraphDataset() elif args.dataset == "citeseer": data = CiteseerGraphDataset() elif args.dataset == "pubmed": data = PubmedGraphDataset() else: raise ValueError("Unknown dataset: {}".format(args.dataset)) if args.num_layers <= 0: raise ValueError("num layer must be positive int") g = data[0] if args.gpu < 0: cuda = False else: cuda = True g = g.to(args.gpu) features = g.ndata["feat"] labels = g.ndata["label"] train_mask = g.ndata["train_mask"] val_mask = g.ndata["val_mask"] test_mask = g.ndata["test_mask"] num_feats = features.shape[1] n_classes = data.num_labels n_edges = g.number_of_edges() print( """----Data statistics------' #Edges %d #Classes %d #Train samples %d #Val samples %d #Test samples %d""" % ( n_edges, n_classes, train_mask.int().sum().item(), val_mask.int().sum().item(), test_mask.int().sum().item(), ) ) # add self loop g = dgl.remove_self_loop(g) g = dgl.add_self_loop(g) n_edges = g.number_of_edges() # create model heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads] model = HardGAT( g, args.num_layers, num_feats, args.num_hidden, n_classes, heads, F.elu, args.in_drop, args.attn_drop, args.negative_slope, args.residual, args.k, ) print(model) if args.early_stop: stopper = EarlyStopping(patience=100) if cuda: model.cuda() loss_fcn = torch.nn.CrossEntropyLoss() # use optimizer optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) # initialize graph dur = [] for epoch in range(args.epochs): model.train() if epoch >= 3: t0 = time.time() # forward logits = model(features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() if epoch >= 3: dur.append(time.time() - t0) train_acc = accuracy(logits[train_mask], labels[train_mask]) if args.fastmode: val_acc = accuracy(logits[val_mask], labels[val_mask]) else: val_acc = evaluate(model, features, labels, val_mask) if args.early_stop: if stopper.step(val_acc, model): break print( "Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |" " ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".format( epoch, np.mean(dur), loss.item(), train_acc, val_acc, n_edges / np.mean(dur) / 1000, ) ) print() if args.early_stop: model.load_state_dict(torch.load("es_checkpoint.pt")) acc = evaluate(model, features, labels, test_mask) print("Test Accuracy {:.4f}".format(acc)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="GAT") register_data_args(parser) parser.add_argument( "--gpu", type=int, default=-1, help="which GPU to use. Set -1 to use CPU.", ) parser.add_argument( "--epochs", type=int, default=200, help="number of training epochs" ) parser.add_argument( "--num-heads", type=int, default=8, help="number of hidden attention heads", ) parser.add_argument( "--num-out-heads", type=int, default=1, help="number of output attention heads", ) parser.add_argument( "--num-layers", type=int, default=1, help="number of hidden layers" ) parser.add_argument( "--num-hidden", type=int, default=8, help="number of hidden units" ) parser.add_argument( "--residual", action="store_true", default=False, help="use residual connection", ) parser.add_argument( "--in-drop", type=float, default=0.6, help="input feature dropout" ) parser.add_argument( "--attn-drop", type=float, default=0.6, help="attention dropout" ) parser.add_argument("--lr", type=float, default=0.01, help="learning rate") parser.add_argument( "--weight-decay", type=float, default=5e-4, help="weight decay" ) parser.add_argument( "--negative-slope", type=float, default=0.2, help="the negative slope of leaky relu", ) parser.add_argument( "--early-stop", action="store_true", default=False, help="indicates whether to use early stop or not", ) parser.add_argument( "--fastmode", action="store_true", default=False, help="skip re-evaluate the validation set", ) parser.add_argument( "--k", type=int, default=8, help="top k neighor for attention calculation", ) args = parser.parse_args() print(args) main(args)