import torch import torch.nn as nn import dgl.function as fn import torch.nn.functional as F class PGNN_layer(nn.Module): def __init__(self, input_dim, output_dim): super(PGNN_layer, self).__init__() self.input_dim = input_dim self.linear_hidden_u = nn.Linear(input_dim, output_dim) self.linear_hidden_v = nn.Linear(input_dim, output_dim) self.linear_out_position = nn.Linear(output_dim, 1) self.act = nn.ReLU() def forward(self, graph, feature, anchor_eid, dists_max): with graph.local_scope(): u_feat = self.linear_hidden_u(feature) v_feat = self.linear_hidden_v(feature) graph.srcdata.update({'u_feat': u_feat}) graph.dstdata.update({'v_feat': v_feat}) graph.apply_edges(fn.u_mul_e('u_feat', 'sp_dist', 'u_message')) graph.apply_edges(fn.v_add_e('v_feat', 'u_message', 'message')) messages = torch.index_select(graph.edata['message'], 0, torch.LongTensor(anchor_eid).to(feature.device)) messages = messages.reshape(dists_max.shape[0], dists_max.shape[1], messages.shape[-1]) messages = self.act(messages) # n*m*d out_position = self.linear_out_position(messages).squeeze(-1) # n*m_out out_structure = torch.mean(messages, dim=1) # n*d return out_position, out_structure class PGNN(nn.Module): def __init__(self, input_dim, feature_dim=32, dropout=0.5): super(PGNN, self).__init__() self.dropout = nn.Dropout(dropout) self.linear_pre = nn.Linear(input_dim, feature_dim) self.conv_first = PGNN_layer(feature_dim, feature_dim) self.conv_out = PGNN_layer(feature_dim, feature_dim) def forward(self, data): x = data['graph'].ndata['feat'] graph = data['graph'] x = self.linear_pre(x) x_position, x = self.conv_first(graph, x, data['anchor_eid'], data['dists_max']) x = self.dropout(x) x_position, x = self.conv_out(graph, x, data['anchor_eid'], data['dists_max']) x_position = F.normalize(x_position, p=2, dim=-1) return x_position