import argparse import os import dgl from gnnlens import Writer import torch as th from dgl import load_graphs from dgl.nn import GNNExplainer from models import Model from dgl.data import BAShapeDataset, BACommunityDataset, TreeCycleDataset, TreeGridDataset def main(args): if args.dataset == 'BAShape': dataset = BAShapeDataset(seed=0) elif args.dataset == 'BACommunity': dataset = BACommunityDataset(seed=0) elif args.dataset == 'TreeCycle': dataset = TreeCycleDataset(seed=0) elif args.dataset == 'TreeGrid': dataset = TreeGridDataset(seed=0) graph = dataset[0] labels = graph.ndata['label'] feats = graph.ndata['feat'] num_classes = dataset.num_classes # load an existing model model_path = os.path.join('./', f'model_{args.dataset}.pth') model_stat_dict = th.load(model_path) model = Model(feats.shape[-1], num_classes) model.load_state_dict(model_stat_dict) # Choose the first node of the class 1 for explaining prediction target_class = 1 for n_idx, n_label in enumerate(labels): if n_label == target_class: break explainer = GNNExplainer(model, num_hops=3) new_center, sub_graph, feat_mask, edge_mask = explainer.explain_node(n_idx, graph, feats) # gnnlens2 # Specify the path to create a new directory for dumping data files. writer = Writer('gnn_subgraph') writer.add_graph(name=args.dataset, graph=graph, nlabels=labels, num_nlabel_types=num_classes) writer.add_subgraph(graph_name=args.dataset, subgraph_name='GNNExplainer', node_id=n_idx, subgraph_nids=sub_graph.ndata[dgl.NID], subgraph_eids=sub_graph.edata[dgl.EID], subgraph_eweights=edge_mask) # Finish dumping writer.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Demo of GNN explainer in DGL') parser.add_argument('--dataset', type=str, default='BAShape', choices=['BAShape', 'BACommunity', 'TreeCycle', 'TreeGrid']) args = parser.parse_args() print(args) main(args)