""" .. currentmodule:: dgl DGL at a Glance ========================= **Author**: `Minjie Wang `_, Quan Gan, `Jake Zhao `_, Zheng Zhang DGL is a Python package dedicated to deep learning on graphs, built atop existing tensor DL frameworks (e.g. Pytorch, MXNet) and simplifying the implementation of graph-based neural networks. The goal of this tutorial: - Understand how DGL enables computation on graph from a high level. - Train a simple graph neural network in DGL to classify nodes in a graph. At the end of this tutorial, we hope you get a brief feeling of how DGL works. *This tutorial assumes basic familiarity with pytorch.* """ ############################################################################### # Tutorial problem description # ---------------------------- # # The tutorial is based on the "Zachary's karate club" problem. The karate club # is a social network that includes 34 members and documents pairwise links # between members who interact outside the club. The club later divides into # two communities led by the instructor (node 0) and the club president (node # 33). The network is visualized as follows with the color indicating the # community: # # .. image:: https://data.dgl.ai/tutorial/img/karate-club.png # :align: center # # The task is to predict which side (0 or 33) each member tends to join given # the social network itself. ############################################################################### # Step 1: Creating a graph in DGL # ------------------------------- # Create the graph for Zachary's karate club as follows: import dgl import numpy as np def build_karate_club_graph(): # All 78 edges are stored in two numpy arrays. One for source endpoints # while the other for destination endpoints. src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10, 10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21, 25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33]) dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4, 5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23, 24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23, 29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30, 31, 32]) # Edges are directional in DGL; Make them bi-directional. u = np.concatenate([src, dst]) v = np.concatenate([dst, src]) # Construct a DGLGraph return dgl.graph((u, v)) ############################################################################### # Print out the number of nodes and edges in our newly constructed graph: G = build_karate_club_graph() print('We have %d nodes.' % G.number_of_nodes()) print('We have %d edges.' % G.number_of_edges()) ############################################################################### # Visualize the graph by converting it to a `networkx # `_ graph: import networkx as nx # Since the actual graph is undirected, we convert it for visualization # purpose. nx_G = G.to_networkx().to_undirected() # Kamada-Kawaii layout usually looks pretty for arbitrary graphs pos = nx.kamada_kawai_layout(nx_G) nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]]) ############################################################################### # Step 2: Assign features to nodes or edges # -------------------------------------------- # Graph neural networks associate features with nodes and edges for training. # For our classification example, since there is no input feature, we assign each node # with a learnable embedding vector. # In DGL, you can add features for all nodes at once, using a feature tensor that # batches node features along the first dimension. The code below adds the learnable # embeddings for all nodes: import torch import torch.nn as nn import torch.nn.functional as F embed = nn.Embedding(34, 5) # 34 nodes with embedding dim equal to 5 G.ndata['feat'] = embed.weight ############################################################################### # Print out the node features to verify: # print out node 2's input feature print(G.ndata['feat'][2]) # print out node 10 and 11's input features print(G.ndata['feat'][[10, 11]]) ############################################################################### # Step 3: Define a Graph Convolutional Network (GCN) # -------------------------------------------------- # To perform node classification, use the Graph Convolutional Network # (GCN) developed by `Kipf and Welling `_. Here # is the simplest definition of a GCN framework. We recommend that you # read the original paper for more details. # # - At layer :math:`l`, each node :math:`v_i^l` carries a feature vector :math:`h_i^l`. # - Each layer of the GCN tries to aggregate the features from :math:`u_i^{l}` where # :math:`u_i`'s are neighborhood nodes to :math:`v` into the next layer representation at # :math:`v_i^{l+1}`. This is followed by an affine transformation with some # non-linearity. # # The above definition of GCN fits into a **message-passing** paradigm: Each # node will update its own feature with information sent from neighboring # nodes. A graphical demonstration is displayed below. # # .. image:: https://data.dgl.ai/tutorial/1_first/mailbox.png # :alt: mailbox # :align: center # # In DGL, we provide implementations of popular Graph Neural Network layers under # the `dgl..nn` subpackage. The :class:`~dgl.nn.pytorch.GraphConv` module # implements one Graph Convolutional layer. from dgl.nn.pytorch import GraphConv ############################################################################### # Define a deeper GCN model that contains two GCN layers: class GCN(nn.Module): def __init__(self, in_feats, hidden_size, num_classes): super(GCN, self).__init__() self.conv1 = GraphConv(in_feats, hidden_size) self.conv2 = GraphConv(hidden_size, num_classes) def forward(self, g, inputs): h = self.conv1(g, inputs) h = torch.relu(h) h = self.conv2(g, h) return h # The first layer transforms input features of size of 5 to a hidden size of 5. # The second layer transforms the hidden layer and produces output features of # size 2, corresponding to the two groups of the karate club. net = GCN(5, 5, 2) ############################################################################### # Step 4: Data preparation and initialization # ------------------------------------------- # # We use learnable embeddings to initialize the node features. Since this is a # semi-supervised setting, only the instructor (node 0) and the club president # (node 33) are assigned labels. The implementation is available as follow. inputs = embed.weight labeled_nodes = torch.tensor([0, 33]) # only the instructor and the president nodes are labeled labels = torch.tensor([0, 1]) # their labels are different ############################################################################### # Step 5: Train then visualize # ---------------------------- # The training loop is exactly the same as other PyTorch models. # We (1) create an optimizer, (2) feed the inputs to the model, # (3) calculate the loss and (4) use autograd to optimize the model. import itertools optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01) all_logits = [] for epoch in range(50): logits = net(G, inputs) # we save the logits for visualization later all_logits.append(logits.detach()) logp = F.log_softmax(logits, 1) # we only compute loss for labeled nodes loss = F.nll_loss(logp[labeled_nodes], labels) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch %d | Loss: %.4f' % (epoch, loss.item())) ############################################################################### # This is a rather toy example, so it does not even have a validation or test # set. Instead, Since the model produces an output feature of size 2 for each node, we can # visualize by plotting the output feature in a 2D space. # The following code animates the training process from initial guess # (where the nodes are not classified correctly at all) to the end # (where the nodes are linearly separable). import matplotlib.animation as animation import matplotlib.pyplot as plt def draw(i): cls1color = '#00FFFF' cls2color = '#FF00FF' pos = {} colors = [] for v in range(34): pos[v] = all_logits[i][v].numpy() cls = pos[v].argmax() colors.append(cls1color if cls else cls2color) ax.cla() ax.axis('off') ax.set_title('Epoch: %d' % i) nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors, with_labels=True, node_size=300, ax=ax) fig = plt.figure(dpi=150) fig.clf() ax = fig.subplots() draw(0) # draw the prediction of the first epoch plt.close() ############################################################################### # .. image:: https://data.dgl.ai/tutorial/1_first/karate0.png # :height: 300px # :width: 400px # :align: center ############################################################################### # The following animation shows how the model correctly predicts the community # after a series of training epochs. ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200) ############################################################################### # .. image:: https://data.dgl.ai/tutorial/1_first/karate.gif # :height: 300px # :width: 400px # :align: center ############################################################################### # Next steps # ---------- # # In the :doc:`next tutorial <2_basics>`, we will go through some more basics # of DGL, such as reading and writing node/edge features.