#!/bin/bash mkdir hilander_checkpoint ####################### ITER 0 ####################### # iter 0 (supervised baseline) - train Smooth-AP CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python Smooth_AP/src/main.py \ --dataset Inaturalist --lr 1e-5 --fc_lr_mul 1 \ --n_epochs 400 --bs 384 \ --source_path "../../data/" --embed_dim 128 \ --class_num 948 --loss smoothap --infrequent_eval 1 \ --trainset lin_train_set1.txt --testset Inaturalist_test_set1.txt # iter 0 (supervised baseline) - get feature python Smooth_AP/src/get_features.py \ --dataset Inaturalist --lr 1e-5 --fc_lr_mul 1 \ --n_epochs 400 --bs 384 \ --source_path "../../data/" --embed_dim 128 \ --resume "0/checkpoint_0.pth.tar" \ --finetune false --get_features true --iter 0 \ --class_num 948 --loss smoothap \ --trainset lin_train_set1.txt \ --all_trainset train_set1.txt \ --testset Inaturalist_test_set1.txt \ --linsize 29011 # iter 0 (supervised baseline) - train hi-lander python train_subg_inat.py \ --data_path "/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/data/Inaturalist/T_train_iter0_smoothap_inat_features.pkl" \ --model_filename '/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/hilander_checkpoint/inat_l_smoothap_iter0.pth' \ --knn_k 10,5,3 --levels 2,3,4 \ --hidden 512 --epochs 1000 --lr 0.01 \ --batch_size 4096 --num_conv 1 --gat --balance # iter 0 (supervised baseline) - get pseudo labels python test_subg_inat.py \ --data_path '/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/data/Inaturalist/all_train_iter0_smoothap_inat_features.pkl' \ --model_filename '/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/hilander_checkpoint/inat_l_smoothap_iter0.pth' --knn_k 10 \ --tau 0.9 --level 10 --threshold prob \ --hidden 512 --num_conv 1 --gat --batch_size 4096 --early_stop \ --mode selectbydensity --thresh 0.8 \ --linsize 29011 --uinsize 18403 --inclasses 948 \ --output_filename 'data/inat_hilander_l_smoothap_train_selectbydensity_iter0.pkl' for i in {1..4} ; do last_iter=`expr $i - 1` echo ${last_iter} # iter i - train Smooth-AP python Smooth_AP/src/finetune_1head.py \ --dataset Inaturalist --lr 1e-5 --fc_lr_mul 1 \ --n_epochs 400 --bs 384 --class_num 1024 \ --source_path "../../data/" --embed_dim 128 \ --trainset lin_train_set1.txt --testset Inaturalist_test_set1.txt \ --cluster_path "../../data/inat_hilander_l_smoothap_train_selectbydensity_iter${last_iter}.pkl" \ --finetune true --loss smoothap --infrequent_eval 1 --iter ${i} # iter i - get feature python Smooth_AP/src/get_features.py \ --dataset Inaturalist --lr 1e-5 --fc_lr_mul 1 \ --n_epochs 400 --bs 384 \ --source_path "../../data/" --embed_dim 128 \ --resume "${i}/checkpoint_${i}.pth.tar" \ --finetune false --get_features true --iter ${i} \ --class_num 948 --loss smoothap \ --trainset lin_train_set1.txt \ --all_trainset train_set1.txt \ --testset Inaturalist_test_set1.txt \ --linsize 29011 --uinsize 18403 \ --cluster_path "../../data/inat_hilander_l_smoothap_train_selectbydensity_iter${last_iter}.pkl" # iter i - train hi-lander python train_subg_inat.py \ --data_path "/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/data/Inaturalist/T_train_iter${i}_smoothap_inat_features.pkl" \ --model_filename "/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/hilander_checkpoint/inat_l_smoothap_iter${i}.pth" \ --knn_k 10,5,3 --levels 2,3,4 \ --hidden 512 --epochs 1000 --lr 0.01 \ --batch_size 4096 --num_conv 1 --gat --balance # iter i - get pseudo labels python test_subg_inat.py \ --data_path "/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/data/Inaturalist/all_train_iter${i}_smoothap_inat_features.pkl" \ --model_filename "/home/ubuntu/code/dgl/examples/pytorch/hilander/PSS/hilander_checkpoint/inat_l_smoothap_iter${i}.pth" --knn_k 10 \ --tau 0.9 --level 10 --threshold prob \ --hidden 512 --num_conv 1 --gat --batch_size 4096 --early_stop \ --mode selectbydensity --thresh 0.8 \ --linsize 29011 --uinsize 18403 --inclasses 948 \ --output_filename "data/inat_hilander_l_smoothap_train_selectbydensity_iter${i}.pkl" done