import torch import torch.nn as nn import torch.nn.functional as F import dgl.nn as dglnn from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset from dgl import AddSelfLoop import argparse class GAT(nn.Module): def __init__(self,in_size, hid_size, out_size, heads): super().__init__() self.gat_layers = nn.ModuleList() # two-layer GAT self.gat_layers.append(dglnn.GATConv(in_size, hid_size, heads[0], feat_drop=0.6, attn_drop=0.6, activation=F.elu)) self.gat_layers.append(dglnn.GATConv(hid_size*heads[0], out_size, heads[1], feat_drop=0.6, attn_drop=0.6, activation=None)) def forward(self, g, inputs): h = inputs for i, layer in enumerate(self.gat_layers): h = layer(g, h) if i == 1: # last layer h = h.mean(1) else: # other layer(s) h = h.flatten(1) return h def evaluate(g, features, labels, mask, model): model.eval() with torch.no_grad(): logits = model(g, features) logits = logits[mask] labels = labels[mask] _, indices = torch.max(logits, dim=1) correct = torch.sum(indices == labels) return correct.item() * 1.0 / len(labels) def train(g, features, labels, masks, model): # define train/val samples, loss function and optimizer train_mask = masks[0] val_mask = masks[1] loss_fcn = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=5e-3, weight_decay=5e-4) #training loop for epoch in range(200): model.train() logits = model(g, features) loss = loss_fcn(logits[train_mask], labels[train_mask]) optimizer.zero_grad() loss.backward() optimizer.step() acc = evaluate(g, features, labels, val_mask, model) print("Epoch {:05d} | Loss {:.4f} | Accuracy {:.4f} " . format(epoch, loss.item(), acc)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--dataset", type=str, default="cora", help="Dataset name ('cora', 'citeseer', 'pubmed').") args = parser.parse_args() print(f'Training with DGL built-in GATConv module.') # load and preprocess dataset transform = AddSelfLoop() # by default, it will first remove self-loops to prevent duplication if args.dataset == 'cora': data = CoraGraphDataset(transform=transform) elif args.dataset == 'citeseer': data = CiteseerGraphDataset(transform=transform) elif args.dataset == 'pubmed': data = PubmedGraphDataset(transform=transform) else: raise ValueError('Unknown dataset: {}'.format(args.dataset)) g = data[0] device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') g = g.int().to(device) features = g.ndata['feat'] labels = g.ndata['label'] masks = g.ndata['train_mask'], g.ndata['val_mask'], g.ndata['test_mask'] # create GAT model in_size = features.shape[1] out_size = data.num_classes model = GAT(in_size, 8, out_size, heads=[8,1]).to(device) # model training print('Training...') train(g, features, labels, masks, model) # test the model print('Testing...') acc = evaluate(g, features, labels, masks[2], model) print("Test accuracy {:.4f}".format(acc))