Graph Convolutional Networks (GCN) ============ - Paper link: [https://arxiv.org/abs/1609.02907](https://arxiv.org/abs/1609.02907) - Author's code repo: [https://github.com/tkipf/gcn](https://github.com/tkipf/gcn). Note that the original code is implemented with Tensorflow for the paper. Codes ----- The folder contains two implementations of GCN. `gcn_batch.py` uses user-defined message and reduce functions. `gcn_spmv.py` uses DGL's builtin functions so SPMV optimization could be applied. Results ------- Run with following (available dataset: "cora", "citeseer", "pubmed") ```bash python gcn_spmv.py --dataset cora --gpu 0 ``` * cora: ~0.810 (0.79-0.83) (paper: 0.815) * citeseer: 0.707 (paper: 0.703) * pubmed: 0.792 (paper: 0.790)