SchNet & MGCN ============ - K.T. Schütt. P.-J. Kindermans, H. E. Sauceda, S. Chmiela, A. Tkatchenko, K.-R. Müller. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30, pp. 992-1002 (2017) [link](http://papers.nips.cc/paper/6700-schnet-a-continuous-filter-convolutional-neural-network-for-modeling-quantum-interactions) - C. Lu, Q. Liu, C. Wang, Z. Huang, P. Lin, L. He, Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective. The 33rd AAAI Conference on Artificial Intelligence (2019) [link](https://arxiv.org/abs/1906.11081) Dependencies ------------ - PyTorch 1.0+ - dgl 0.3+ - RDKit (If use [Alchemy dataset](https://arxiv.org/abs/1906.09427).) Usage ----- Example usage on Alchemy dataset: + SchNet: expected MAE 0.065 ```py python train.py --model sch --epochs 250 ``` + MGCN: expected MAE 0.050 ```py python train.py --model mgcn --epochs 250 ``` *With Tesla V100, SchNet takes 80s/epoch and MGCN takes 110s/epoch.* Codes ----- The folder contains five python files: - `sch.py` the implementation of SchNet model. - `mgcn.py` the implementation of Multilevel Graph Convolutional Network(MGCN). - `layers.py` layers contained by two models above. - `Alchemy_dataset.py` example dataloader of [Tencent Alchemy](https://alchemy.tencent.com) dataset. - `train.py` example training code. Modify `train.py` to switch between different implementations.