import torch import argparse import torch.optim as optim from torch.utils.data import DataLoader from tqdm import tqdm from reading_data import DataReader, Metapath2vecDataset from model import SkipGramModel class Metapath2VecTrainer: def __init__(self, args): self.data = DataReader(args.download, args.min_count, args.care_type) dataset = Metapath2vecDataset(self.data, args.window_size) self.dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=dataset.collate) self.output_file_name = args.output_file self.emb_size = len(self.data.word2id) self.emb_dimension = args.dim self.batch_size = args.batch_size self.iterations = args.iterations self.initial_lr = args.initial_lr self.skip_gram_model = SkipGramModel(self.emb_size, self.emb_dimension) self.use_cuda = torch.cuda.is_available() self.device = torch.device("cuda" if self.use_cuda else "cpu") if self.use_cuda: self.skip_gram_model.cuda() def train(self): for iteration in range(self.iterations): print("\n\n\nIteration: " + str(iteration + 1)) optimizer = optim.SparseAdam(self.skip_gram_model.parameters(), lr=self.initial_lr) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(self.dataloader)) running_loss = 0.0 for i, sample_batched in enumerate(tqdm(self.dataloader)): if len(sample_batched[0]) > 1: pos_u = sample_batched[0].to(self.device) pos_v = sample_batched[1].to(self.device) neg_v = sample_batched[2].to(self.device) scheduler.step() optimizer.zero_grad() loss = self.skip_gram_model.forward(pos_u, pos_v, neg_v) loss.backward() optimizer.step() running_loss = running_loss * 0.9 + loss.item() * 0.1 if i > 0 and i % 500 == 0: print(" Loss: " + str(running_loss)) self.skip_gram_model.save_embedding(self.data.id2word, self.output_file_name) if __name__ == '__main__': parser = argparse.ArgumentParser(description="Metapath2vec") #parser.add_argument('--input_file', type=str, help="input_file") parser.add_argument('--download', type=str, help="download_path") parser.add_argument('--output_file', type=str, help='output_file') parser.add_argument('--dim', default=128, type=int, help="embedding dimensions") parser.add_argument('--window_size', default=7, type=int, help="context window size") parser.add_argument('--iterations', default=5, type=int, help="iterations") parser.add_argument('--batch_size', default=50, type=int, help="batch size") parser.add_argument('--care_type', default=0, type=int, help="if 1, heterogeneous negative sampling, else normal negative sampling") parser.add_argument('--initial_lr', default=0.025, type=float, help="learning rate") parser.add_argument('--min_count', default=5, type=int, help="min count") parser.add_argument('--num_workers', default=16, type=int, help="number of workers") args = parser.parse_args() m2v = Metapath2VecTrainer(args) m2v.train()