# Official DGL Examples and Modules The folder contains example implementations of selected research papers related to Graph Neural Networks. Note that the examples may not work with incompatible DGL versions. * For examples working with the latest master (or the latest [nightly build](https://www.dgl.ai/pages/start.html)), check out https://github.com/dmlc/dgl/tree/master/examples. * For examples working with a certain release, check out `https://github.com/dmlc/dgl/tree//examples` (E.g., https://github.com/dmlc/dgl/tree/0.5.x/examples) ## Overview | Paper | node classification | link prediction / classification | graph property prediction | sampling | OGB | | ------------------------------------------------------------ | ------------------- | -------------------------------- | ------------------------- | ------------------ | ------------------ | | [Contrastive Multi-View Representation Learning on Graphs](#mvgrl) | :heavy_check_mark: | | :heavy_check_mark: | | | | [Graph Random Neural Network for Semi-Supervised Learning on Graphs](#grand) | :heavy_check_mark: | | | | | | [Heterogeneous Graph Transformer](#hgt) | :heavy_check_mark: | :heavy_check_mark: | | | | | [Graph Convolutional Networks for Graphs with Multi-Dimensionally Weighted Edges](#mwe) | :heavy_check_mark: | | | | :heavy_check_mark: | | [SIGN: Scalable Inception Graph Neural Networks](#sign) | :heavy_check_mark: | | | | :heavy_check_mark: | | [Strategies for Pre-training Graph Neural Networks](#prestrategy) | | | :heavy_check_mark: | | | | [InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization](#infograph) | | | :heavy_check_mark: | | | | [Graph Neural Networks with convolutional ARMA filters](#arma) | :heavy_check_mark: | | | | | | [Predict then Propagate: Graph Neural Networks meet Personalized PageRank](#appnp) | :heavy_check_mark: | | | | | | [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](#clustergcn) | :heavy_check_mark: | | | :heavy_check_mark: | :heavy_check_mark: | | [Deep Graph Infomax](#dgi) | :heavy_check_mark: | | | | | | [Hierarchical Graph Representation Learning with Differentiable Pooling](#diffpool) | | | :heavy_check_mark: | | | | [Representation Learning for Attributed Multiplex Heterogeneous Network](#gatne-t) | | :heavy_check_mark: | | | | | [How Powerful are Graph Neural Networks?](#gin) | :heavy_check_mark: | | :heavy_check_mark: | | :heavy_check_mark: | | [Heterogeneous Graph Attention Network](#han) | :heavy_check_mark: | | | | | | [Simplifying Graph Convolutional Networks](#sgc) | :heavy_check_mark: | | | | | | [Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective](#mgcn) | | | :heavy_check_mark: | | | | [Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism](#attentivefp) | | | :heavy_check_mark: | | | | [MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing](#mixhop) | :heavy_check_mark: | | | | | | [Graph Attention Networks](#gat) | :heavy_check_mark: | | | | :heavy_check_mark: | | [Attention-based Graph Neural Network for Semi-supervised Learning](#agnn) | :heavy_check_mark: | | | :heavy_check_mark: | | | [Graph Convolutional Neural Networks for Web-Scale Recommender Systems](#pinsage) | | | | | | | [Semi-Supervised Classification with Graph Convolutional Networks](#gcn) | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | [Graph Convolutional Matrix Completion](#gcmc) | | :heavy_check_mark: | | | | | [Inductive Representation Learning on Large Graphs](#graphsage) | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | | [metapath2vec: Scalable Representation Learning for Heterogeneous Networks](#metapath2vec) | :heavy_check_mark: | | | | | | [Topology Adaptive Graph Convolutional Networks](#tagcn) | :heavy_check_mark: | | | | | | [Modeling Relational Data with Graph Convolutional Networks](#rgcn) | :heavy_check_mark: | :heavy_check_mark: | | :heavy_check_mark: | | | [Neural Message Passing for Quantum Chemistry](#mpnn) | | | :heavy_check_mark: | | | | [SchNet: A continuous-filter convolutional neural network for modeling quantum interactions](#schnet) | | | :heavy_check_mark: | | | | [Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering](#chebnet) | :heavy_check_mark: | | :heavy_check_mark: | | | | [Geometric deep learning on graphs and manifolds using mixture model CNNs](#monet) | :heavy_check_mark: | | :heavy_check_mark: | | | | [Molecular Graph Convolutions: Moving Beyond Fingerprints](#weave) | | | :heavy_check_mark: | | | | [LINE: Large-scale Information Network Embedding](#line) | | :heavy_check_mark: | | | :heavy_check_mark: | | [DeepWalk: Online Learning of Social Representations](#deepwalk) | | :heavy_check_mark: | | | :heavy_check_mark: | | [Self-Attention Graph Pooling](#sagpool) | | | :heavy_check_mark: | | | | [Convolutional Networks on Graphs for Learning Molecular Fingerprints](#nf) | | | :heavy_check_mark: | | | | [GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation](#gnnfilm) | :heavy_check_mark: | | | | | | [Hierarchical Graph Pooling with Structure Learning](#hgp-sl) | | | :heavy_check_mark: | | | | [Graph Representation Learning via Hard and Channel-Wise Attention Networks](#hardgat) |:heavy_check_mark: | | | | | | [Neural Graph Collaborative Filtering](#ngcf) | | :heavy_check_mark: | | | | | [Graph Cross Networks with Vertex Infomax Pooling](#gxn) | | | :heavy_check_mark: | | | | [Towards Deeper Graph Neural Networks](#dagnn) | :heavy_check_mark: | | | | | | [The PageRank Citation Ranking: Bringing Order to the Web](#pagerank) | | | | | | | [Fast Suboptimal Algorithms for the Computation of Graph Edit Distance](#beam) | | | | | | | [Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic](#astar) | | | | | | | [A Three-Way Model for Collective Learning on Multi-Relational Data](#rescal) | | | | | | | [Speeding Up Graph Edit Distance Computation through Fast Bipartite Matching](#bipartite) | | | | | | | [Translating Embeddings for Modeling Multi-relational Data](#transe) | | | | | | | [A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance](#hausdorff) | | | | | | | [Embedding Entities and Relations for Learning and Inference in Knowledge Bases](#distmul) | | | | | | | [Learning Entity and Relation Embeddings for Knowledge Graph Completion](#transr) | | | | | | | [Order Matters: Sequence to sequence for sets](#seq2seq) | | | :heavy_check_mark: | | | | [Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks](#treelstm) | | | | | | | [Complex Embeddings for Simple Link Prediction](#complex) | | | | | | | [Gated Graph Sequence Neural Networks](#ggnn) | | | | | | | [Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity](#acnn) | | | | | | | [Attention Is All You Need](#transformer) | | | | | | | [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](#pointnet++) | | | | | | | [PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation](#pointnet) | | | | | | | [Dynamic Routing Between Capsules](#capsule) | | | | | | | [An End-to-End Deep Learning Architecture for Graph Classification](#dgcnn) | | | :heavy_check_mark: | | | | [Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting](#stgcn) | | | | | | | [Recurrent Relational Networks](#rrn) | | | | | | | [Junction Tree Variational Autoencoder for Molecular Graph Generation](#jtvae) | | | | | | | [Learning Deep Generative Models of Graphs](#dgmg) | | | | | | | [RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space](#rotate) | | | | | | | [A graph-convolutional neural network model for the prediction of chemical reactivity](#wln) | | | | | | | [Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks](#settrans) | | | :heavy_check_mark: | | | | [Graphical Contrastive Losses for Scene Graph Parsing](#scenegraph) | | | | | | | [Dynamic Graph CNN for Learning on Point Clouds](#dgcnnpoint) | | | | | | | [Supervised Community Detection with Line Graph Neural Networks](#lgnn) | | | | | | | [Text Generation from Knowledge Graphs with Graph Transformers](#graphwriter) | | | | | | | [Temporal Graph Networks For Deep Learning on Dynamic Graphs](#tgn) | | :heavy_check_mark: | | | | | [Directional Message Passing for Molecular Graphs](#dimenet) | | | :heavy_check_mark: | | | | [Link Prediction Based on Graph Neural Networks](#seal) | | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: | | [Variational Graph Auto-Encoders](#vgae) | | :heavy_check_mark: | | | | | [GNNExplainer: Generating Explanations for Graph Neural Networks](#gnnexplainer) | :heavy_check_mark: | | | | | ## 2020 - Hassani and Khasahmadi. Contrastive Multi-View Representation Learning on Graphs. [Paper link](https://arxiv.org/abs/2006.05582). - Example code: [PyTorch](../examples/pytorch/mvgrl) - Tags: graph diffusion, self-supervised learning on graphs. - Feng et al. Graph Random Neural Network for Semi-Supervised Learning on Graphs. [Paper link](https://arxiv.org/abs/2005.11079). - Example code: [PyTorch](../examples/pytorch/grand) - Tags: semi-supervised node classification, simplifying graph convolution, data augmentation - Hu et al. Heterogeneous Graph Transformer. [Paper link](https://arxiv.org/abs/2003.01332). - Example code: [PyTorch](../examples/pytorch/hgt) - Tags: dynamic heterogeneous graphs, large-scale, node classification, link prediction - Chen. Graph Convolutional Networks for Graphs with Multi-Dimensionally Weighted Edges. [Paper link](https://cims.nyu.edu/~chenzh/files/GCN_with_edge_weights.pdf). - Example code: [PyTorch on ogbn-proteins](../examples/pytorch/ogb/ogbn-proteins) - Tags: node classification, weighted graphs, OGB - Frasca et al. SIGN: Scalable Inception Graph Neural Networks. [Paper link](https://arxiv.org/abs/2004.11198). - Example code: [PyTorch on ogbn-arxiv/products/mag](../examples/pytorch/ogb/sign), [PyTorch](../examples/pytorch/sign) - Tags: node classification, OGB, large-scale, heterogeneous graphs - Hu et al. Strategies for Pre-training Graph Neural Networks. [Paper link](https://arxiv.org/abs/1905.12265). - Example code: [Molecule embedding](https://github.com/awslabs/dgl-lifesci/tree/master/examples/molecule_embeddings), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration) - Tags: molecules, graph classification, unsupervised learning, self-supervised learning, molecular property prediction - Marc Brockschmidt. GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation. [Paper link](https://arxiv.org/abs/1906.12192). - Example code: [PyTorch](../examples/pytorch/GNN-FiLM) - Tags: multi-relational graphs, hypernetworks, GNN architectures - Li, Maosen, et al. Graph Cross Networks with Vertex Infomax Pooling. [Paper link](https://arxiv.org/abs/2010.01804). - Example code: [PyTorch](../examples/pytorch/gxn) - Tags: pooling, graph classification - Liu et al. Towards Deeper Graph Neural Networks. [Paper link](https://arxiv.org/abs/2007.09296). - Example code: [PyTorch](../examples/pytorch/dagnn) - Tags: over-smoothing, node classification - Klicpera et al. Directional Message Passing for Molecular Graphs. [Paper link](https://arxiv.org/abs/2003.03123). - Example code: [PyTorch](../examples/pytorch/dimenet) - Tags: molecules, molecular property prediction, quantum chemistry - Rossi et al. Temporal Graph Networks For Deep Learning on Dynamic Graphs. [Paper link](https://arxiv.org/abs/2006.10637). - Example code: [Pytorch](../examples/pytorch/tgn) - Tags: over-smoothing, node classification ## 2019 - Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. [Paper link](https://arxiv.org/abs/1908.01000). - Example code: [PyTorch](../examples/pytorch/infograph) - Tags: semi-supervised graph regression, unsupervised graph classification - Bianchi et al. Graph Neural Networks with Convolutional ARMA Filters. [Paper link](https://arxiv.org/abs/1901.01343). - Example code: [PyTorch](../examples/pytorch/arma) - Tags: node classification - Klicpera et al. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. [Paper link](https://arxiv.org/abs/1810.05997). - Example code: [PyTorch](../examples/pytorch/appnp), [MXNet](../examples/mxnet/appnp) - Tags: node classification - Chiang et al. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1905.07953). - Example code: [PyTorch](../examples/pytorch/cluster_gcn), [PyTorch-based GraphSAGE variant on OGB](../examples/pytorch/ogb/cluster-sage), [PyTorch-based GAT variant on OGB](../examples/pytorch/ogb/cluster-gat) - Tags: graph partition, node classification, large-scale, OGB, sampling - Veličković et al. Deep Graph Infomax. [Paper link](https://arxiv.org/abs/1809.10341). - Example code: [PyTorch](../examples/pytorch/dgi), [TensorFlow](../examples/tensorflow/dgi) - Tags: unsupervised learning, node classification - Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling. [Paper link](https://arxiv.org/abs/1806.08804). - Example code: [PyTorch](../examples/pytorch/diffpool) - Tags: pooling, graph classification, graph coarsening - Cen et al. Representation Learning for Attributed Multiplex Heterogeneous Network. [Paper link](https://arxiv.org/abs/1905.01669v2). - Example code: [PyTorch](../examples/pytorch/GATNE-T) - Tags: heterogeneous graphs, link prediction, large-scale - Xu et al. How Powerful are Graph Neural Networks? [Paper link](https://arxiv.org/abs/1810.00826). - Example code: [PyTorch on graph classification](../examples/pytorch/gin), [PyTorch on node classification](../examples/pytorch/model_zoo/citation_network), [PyTorch on ogbg-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/ogbg_ppa), [MXNet](../examples/mxnet/gin) - Tags: graph classification, node classification, OGB - Koncel-Kedziorski et al. Text Generation from Knowledge Graphs with Graph Transformers. [Paper link](https://arxiv.org/abs/1904.02342). - Example code: [PyTorch](../examples/pytorch/graphwriter) - Tags: knowledge graph, text generation - Wang et al. Heterogeneous Graph Attention Network. [Paper link](https://arxiv.org/abs/1903.07293). - Example code: [PyTorch](../examples/pytorch/han) - Tags: heterogeneous graphs, node classification - Chen et al. Supervised Community Detection with Line Graph Neural Networks. [Paper link](https://arxiv.org/abs/1705.08415). - Example code: [PyTorch](../examples/pytorch/line_graph) - Tags: line graph, community detection - Wu et al. Simplifying Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1902.07153). - Example code: [PyTorch](../examples/pytorch/sgc), [MXNet](../examples/mxnet/sgc) - Tags: node classification - Wang et al. Dynamic Graph CNN for Learning on Point Clouds. [Paper link](https://arxiv.org/abs/1801.07829). - Example code: [PyTorch](../examples/pytorch/pointcloud/edgeconv) - Tags: point cloud classification - Zhang et al. Graphical Contrastive Losses for Scene Graph Parsing. [Paper link](https://arxiv.org/abs/1903.02728). - Example code: [MXNet](../examples/mxnet/scenegraph) - Tags: scene graph extraction - Lee et al. Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. [Paper link](https://arxiv.org/abs/1810.00825). - Pooling module: [PyTorch encoder](https://docs.dgl.ai/api/python/nn.pytorch.html#settransformerencoder), [PyTorch decoder](https://docs.dgl.ai/api/python/nn.pytorch.html#settransformerdecoder) - Tags: graph classification - Coley et al. A graph-convolutional neural network model for the prediction of chemical reactivity. [Paper link](https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04228d#!divAbstract). - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/reaction_prediction/rexgen_direct) - Tags: molecules, reaction prediction - Lu et al. Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective. [Paper link](https://arxiv.org/abs/1906.11081). - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy) - Tags: molecules, quantum chemistry - Xiong et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism. [Paper link](https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b00959). - Example code: [PyTorch (with attention visualization)](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/pubchem_aromaticity), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration) - Tags: molecules, molecular property prediction - Sun et al. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. [Paper link](https://arxiv.org/pdf/1902.10197.pdf). - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html) - Tags: knowledge graph embedding - Abu-El-Haija et al. MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. [Paper link](https://arxiv.org/abs/1905.00067). - Example code: [PyTorch](../examples/pytorch/mixhop) - Tags: node classification - Lee, Junhyun, et al. Self-Attention Graph Pooling. [Paper link](https://arxiv.org/abs/1904.08082). - Example code: [PyTorch](../examples/pytorch/sagpool) - Tags: graph classification, pooling - Zhang, Zhen, et al. Hierarchical Graph Pooling with Structure Learning. [Paper link](https://arxiv.org/abs/1911.05954). - Example code: [PyTorch](../examples/pytorch/hgp_sl) - Tags: graph classification, pooling - Gao, Hongyang, et al. Graph Representation Learning via Hard and Channel-Wise Attention Networks [Paper link](https://arxiv.org/abs/1907.04652). - Example code: [PyTorch](../examples/pytorch/hardgat) - Tags: node classification, graph attention - Wang, Xiang, et al. Neural Graph Collaborative Filtering. [Paper link](https://arxiv.org/abs/1905.08108). - Example code: [PyTorch](../examples/pytorch/NGCF) - Tags: Collaborative Filtering, Recommendation, Graph Neural Network - Ying, Rex, et al. GNNExplainer: Generating Explanations for Graph Neural Networks. [Paper link](https://arxiv.org/abs/1903.03894). - Example code: [PyTorch](../examples/pytorch/gnn_explainer) - Tags: Graph Neural Network, Explainability ## 2018 - Li et al. Learning Deep Generative Models of Graphs. [Paper link](https://arxiv.org/abs/1803.03324). - Example code: [PyTorch example for cycles](../examples/pytorch/dgmg), [PyTorch example for molecules](https://github.com/awslabs/dgl-lifesci/tree/master/examples/generative_models/dgmg) - Tags: generative models, autoregressive models, molecules - Veličković et al. Graph Attention Networks. [Paper link](https://arxiv.org/abs/1710.10903). - Example code: [PyTorch](../examples/pytorch/gat), [PyTorch on ogbn-arxiv](../examples/pytorch/ogb/ogbn-arxiv), [PyTorch on ogbn-products](../examples/pytorch/ogb/ogbn-products), [TensorFlow](../examples/tensorflow/gat), [MXNet](../examples/mxnet/gat) - Tags: node classification, OGB - Jin et al. Junction Tree Variational Autoencoder for Molecular Graph Generation. [Paper link](https://arxiv.org/abs/1802.04364). - Example code: [PyTorch](../examples/pytorch/jtnn) - Tags: generative models, molecules, VAE - Thekumparampil et al. Attention-based Graph Neural Network for Semi-supervised Learning. [Paper link](https://arxiv.org/abs/1803.03735). - Example code: [PyTorch](../examples/pytorch/model_zoo/citation_network) - Tags: node classification - Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. [Paper link](https://arxiv.org/abs/1806.01973). - Example code: [PyTorch](../examples/pytorch/pinsage) - Tags: recommender system, large-scale, sampling - Berg Palm et al. Recurrent Relational Networks. [Paper link](https://arxiv.org/abs/1711.08028). - Example code: [PyTorch](../examples/pytorch/rrn) - Tags: sudoku solving - Yu et al. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. [Paper link](https://arxiv.org/abs/1709.04875v4). - Example code: [PyTorch](../examples/pytorch/stgcn_wave) - Tags: spatio-temporal, traffic forecasting - Zhang et al. An End-to-End Deep Learning Architecture for Graph Classification. [Paper link](https://www.cse.wustl.edu/~ychen/public/DGCNN.pdf). - Pooling module: [PyTorch](https://docs.dgl.ai/api/python/nn.pytorch.html#sortpooling), [TensorFlow](https://docs.dgl.ai/api/python/nn.tensorflow.html#sortpooling), [MXNet](https://docs.dgl.ai/api/python/nn.mxnet.html#sortpooling) - Tags: graph classification - Zhang et al. Link Prediction Based on Graph Neural Networks. [Paper link](https://papers.nips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf). - Example code: [pytorch](../examples/pytorch/seal) - Tags: link prediction, sampling ## 2017 - Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1609.02907). - Example code: [PyTorch](../examples/pytorch/gcn), [PyTorch on ogbn-arxiv](../examples/pytorch/ogb/ogbn-arxiv), [PyTorch on ogbl-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/link_prediction/ogbl-ppa), [PyTorch on ogbg-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/ogbg_ppa), [TensorFlow](../examples/tensorflow/gcn), [MXNet](../examples/mxnet/gcn) - Tags: node classification, link prediction, graph classification, OGB - Sabour et al. Dynamic Routing Between Capsules. [Paper link](https://arxiv.org/abs/1710.09829). - Example code: [PyTorch](../examples/pytorch/capsule) - Tags: image classification - van den Berg et al. Graph Convolutional Matrix Completion. [Paper link](https://arxiv.org/abs/1706.02263). - Example code: [PyTorch](../examples/pytorch/gcmc) - Tags: matrix completion, recommender system, link prediction, bipartite graphs - Hamilton et al. Inductive Representation Learning on Large Graphs. [Paper link](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf). - Example code: [PyTorch](../examples/pytorch/graphsage), [PyTorch on ogbn-products](../examples/pytorch/ogb/ogbn-products), [PyTorch on ogbl-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/link_prediction/ogbl-ppa), [MXNet](../examples/mxnet/graphsage) - Tags: node classification, sampling, unsupervised learning, link prediction, OGB - Dong et al. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. [Paper link](https://dl.acm.org/doi/10.1145/3097983.3098036). - Example code: [PyTorch](../examples/pytorch/metapath2vec) - Tags: heterogeneous graphs, network embedding, large-scale, node classification - Du et al. Topology Adaptive Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1710.10370). - Example code: [PyTorch](../examples/pytorch/tagcn), [MXNet](../examples/mxnet/tagcn) - Tags: node classification - Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. [Paper link](https://arxiv.org/abs/1612.00593). - Example code: [PyTorch](../examples/pytorch/pointcloud/pointnet) - Tags: point cloud classification, point cloud part-segmentation - Qi et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. [Paper link](https://arxiv.org/abs/1706.02413). - Example code: [PyTorch](../examples/pytorch/pointcloud/pointnet) - Tags: point cloud classification - Schlichtkrull. Modeling Relational Data with Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1703.06103). - Example code: [PyTorch example using homogeneous DGLGraphs](../examples/pytorch/rgcn), [PyTorch](../examples/pytorch/rgcn-hetero), [TensorFlow](../examples/tensorflow/rgcn), [MXNet](../examples/mxnet/rgcn) - Tags: node classification, link prediction, heterogeneous graphs, sampling - Vaswani et al. Attention Is All You Need. [Paper link](https://arxiv.org/abs/1706.03762). - Example code: [PyTorch](../examples/pytorch/transformer) - Tags: machine translation - Gilmer et al. Neural Message Passing for Quantum Chemistry. [Paper link](https://arxiv.org/abs/1704.01212). - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration) - Tags: molecules, quantum chemistry - Gomes et al. Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity. [Paper link](https://arxiv.org/abs/1703.10603). - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/binding_affinity_prediction) - Tags: binding affinity prediction, molecules, proteins - Schütt et al. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. [Paper link](https://arxiv.org/abs/1706.08566). - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy) - Tags: molecules, quantum chemistry ## 2016 - Li et al. Gated Graph Sequence Neural Networks. [Paper link](https://arxiv.org/abs/1511.05493). - Example code: [PyTorch](../examples/pytorch/ggnn) - Tags: question answering - Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. [Paper link](https://arxiv.org/abs/1606.09375). - Example code: [PyTorch on image classification](../examples/pytorch/model_zoo/geometric), [PyTorch on node classification](../examples/pytorch/model_zoo/citation_network) - Tags: image classification, graph classification, node classification - Monti et al. Geometric deep learning on graphs and manifolds using mixture model CNNs. [Paper link](https://arxiv.org/abs/1611.08402). - Example code: [PyTorch on image classification](../examples/pytorch/model_zoo/geometric), [PyTorch on node classification](../examples/pytorch/monet), [MXNet on node classification](../examples/mxnet/monet) - Tags: image classification, graph classification, node classification - Kearnes et al. Molecular Graph Convolutions: Moving Beyond Fingerprints. [Paper link](https://arxiv.org/abs/1603.00856). - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/moleculenet), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration) - Tags: molecular property prediction - Trouillon et al. Complex Embeddings for Simple Link Prediction. [Paper link](http://proceedings.mlr.press/v48/trouillon16.pdf). - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html) - Tags: knowledge graph embedding - Thomas et al. Variational Graph Auto-Encoders. [Paper link](https://arxiv.org/abs/1611.07308). - Example code: [PyTorch](../examples/pytorch/vgae) - Tags: link prediction ## 2015 - Tang et al. LINE: Large-scale Information Network Embedding. [Paper link](https://arxiv.org/abs/1503.03578). - Example code: [PyTorch on OGB](../examples/pytorch/ogb/line) - Tags: network embedding, transductive learning, OGB, link prediction - Sheng Tai et al. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. [Paper link](https://arxiv.org/abs/1503.00075). - Example code: [PyTorch](../examples/pytorch/tree_lstm), [MXNet](../examples/mxnet/tree_lstm) - Tags: sentiment classification - Vinyals et al. Order Matters: Sequence to sequence for sets. [Paper link](https://arxiv.org/abs/1511.06391). - Pooling module: [PyTorch](https://docs.dgl.ai/api/python/nn.pytorch.html#set2set), [MXNet](https://docs.dgl.ai/api/python/nn.mxnet.html#set2set) - Tags: graph classification - Lin et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion. [Paper link](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/9571). - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html) - Tags: knowledge graph embedding - Yang et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. [Paper link](https://arxiv.org/abs/1412.6575). - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html) - Tags: knowledge graph embedding - Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints. [Paper link](https://arxiv.org/abs/1509.09292). - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/moleculenet), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration) - Tags: molecules, molecular property prediction ## 2014 - Perozzi et al. DeepWalk: Online Learning of Social Representations. [Paper link](https://arxiv.org/abs/1403.6652). - Example code: [PyTorch on OGB](../examples/pytorch/ogb/deepwalk) - Tags: network embedding, transductive learning, OGB, link prediction - Fischer et al. A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance. [Paper link](https://link.springer.com/chapter/10.1007/978-3-662-44415-3_9). - Example code: [PyTorch](../examples/pytorch/graph_matching) - Tags: graph edit distance, graph matching ## 2013 - Bordes et al. Translating Embeddings for Modeling Multi-relational Data. [Paper link](https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf). - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html) - Tags: knowledge graph embedding ## 2011 - Fankhauser et al. Speeding Up Graph Edit Distance Computation through Fast Bipartite Matching. [Paper link](https://link.springer.com/chapter/10.1007/978-3-642-20844-7_11). - Example code: [PyTorch](../examples/pytorch/graph_matching) - Tags: graph edit distance, graph matching - Nickel et al. A Three-Way Model for Collective Learning on Multi-Relational Data. [Paper link](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.2015&rep=rep1&type=pdf). - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html) - Tags: knowledge graph embedding ## 2009 - Riesen et al. Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic. [Paper link](https://core.ac.uk/download/pdf/33054885.pdf). - Example code: [PyTorch](../examples/pytorch/graph_matching) - Tags: graph edit distance, graph matching ## 2006 - Neuhaus et al. Fast Suboptimal Algorithms for the Computation of Graph Edit Distance. [Paper link](https://link.springer.com/chapter/10.1007/11815921_17). - Example code: [PyTorch](../examples/pytorch/graph_matching) - Tags: graph edit distance, graph matching ## 1998 - Page et al. The PageRank Citation Ranking: Bringing Order to the Web. [Paper link](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5427). - Example code: [PyTorch](../examples/pytorch/pagerank.py) - Tags: PageRank