import networkx as nx import dgl import torch as th import numpy as np def tree1(): """Generate a tree 0 / \ 1 2 / \ 3 4 Edges are from leaves to root. """ g = dgl.DGLGraph() g.add_nodes(5) g.add_edge(3, 1) g.add_edge(4, 1) g.add_edge(1, 0) g.add_edge(2, 0) g.set_n_repr(th.Tensor([0, 1, 2, 3, 4])) g.set_e_repr(th.randn(4, 10)) return g def tree2(): """Generate a tree 1 / \ 4 3 / \ 2 0 Edges are from leaves to root. """ g = dgl.DGLGraph() g.add_nodes(5) g.add_edge(2, 4) g.add_edge(0, 4) g.add_edge(4, 1) g.add_edge(3, 1) g.set_n_repr(th.Tensor([0, 1, 2, 3, 4])) g.set_e_repr(th.randn(4, 10)) return g def test_batch_unbatch(): t1 = tree1() t2 = tree2() n1 = t1.get_n_repr() n2 = t2.get_n_repr() e1 = t1.get_e_repr() e2 = t2.get_e_repr() bg = dgl.batch([t1, t2]) assert bg.number_of_nodes() == 10 assert bg.number_of_edges() == 8 assert bg.batch_size == 2 assert bg.batch_num_nodes == [5, 5] assert bg.batch_num_edges == [4, 4] tt1, tt2 = dgl.unbatch(bg) assert th.allclose(t1.get_n_repr(), tt1.get_n_repr()) assert th.allclose(t1.get_e_repr(), tt1.get_e_repr()) assert th.allclose(t2.get_n_repr(), tt2.get_n_repr()) assert th.allclose(t2.get_e_repr(), tt2.get_e_repr()) def test_batch_unbatch1(): t1 = tree1() t2 = tree2() b1 = dgl.batch([t1, t2]) b2 = dgl.batch([t2, b1]) assert b2.number_of_nodes() == 15 assert b2.number_of_edges() == 12 assert b2.batch_size == 3 assert b2.batch_num_nodes == [5, 5, 5] assert b2.batch_num_edges == [4, 4, 4] s1, s2, s3 = dgl.unbatch(b2) assert th.allclose(t2.get_n_repr(), s1.get_n_repr()) assert th.allclose(t2.get_e_repr(), s1.get_e_repr()) assert th.allclose(t1.get_n_repr(), s2.get_n_repr()) assert th.allclose(t1.get_e_repr(), s2.get_e_repr()) assert th.allclose(t2.get_n_repr(), s3.get_n_repr()) assert th.allclose(t2.get_e_repr(), s3.get_e_repr()) def test_batch_sendrecv(): t1 = tree1() t2 = tree2() bg = dgl.batch([t1, t2]) bg.register_message_func(lambda src, edge: src) bg.register_reduce_func(lambda node, msgs: th.sum(msgs, 1)) u = [3, 4, 2 + 5, 0 + 5] v = [1, 1, 4 + 5, 4 + 5] bg.send(u, v) bg.recv(v) t1, t2 = dgl.unbatch(bg) assert t1.get_n_repr()[1] == 7 assert t2.get_n_repr()[4] == 2 def test_batch_propagate(): t1 = tree1() t2 = tree2() bg = dgl.batch([t1, t2]) bg.register_message_func(lambda src, edge: src) bg.register_reduce_func(lambda node, msgs: th.sum(msgs, 1)) # get leaves. order = [] # step 1 u = [3, 4, 2 + 5, 0 + 5] v = [1, 1, 4 + 5, 4 + 5] order.append((u, v)) # step 2 u = [1, 2, 4 + 5, 3 + 5] v = [0, 0, 1 + 5, 1 + 5] order.append((u, v)) bg.propagate(traverser=order) t1, t2 = dgl.unbatch(bg) assert t1.get_n_repr()[0] == 9 assert t2.get_n_repr()[1] == 5 def test_batched_edge_ordering(): g1 = dgl.DGLGraph() g1.add_nodes(6) g1.add_edges([4, 4, 2, 2, 0], [5, 3, 3, 1, 1]) e1 = th.randn(5, 10) g1.set_e_repr(e1) g2 = dgl.DGLGraph() g2.add_nodes(6) g2.add_edges([0, 1 ,2 ,5, 4 ,5], [1, 2, 3, 4, 3, 0]) e2 = th.randn(6, 10) g2.set_e_repr(e2) g = dgl.batch([g1, g2]) r1 = g.get_e_repr()[g.edge_id(4, 5)] r2 = g1.get_e_repr()[g1.edge_id(4, 5)] assert th.equal(r1, r2) def test_batch_no_edge(): # FIXME: current impl cannot handle this case!!! # comment out for now to test CI return """ g1 = dgl.DGLGraph() g1.add_nodes(6) g1.add_edges([4, 4, 2, 2, 0], [5, 3, 3, 1, 1]) e1 = th.randn(5, 10) g1.set_e_repr(e1) g2 = dgl.DGLGraph() g2.add_nodes(6) g2.add_edges([0, 1, 2, 5, 4, 5], [1 ,2 ,3, 4, 3, 0]) e2 = th.randn(6, 10) g2.set_e_repr(e2) g3 = dgl.DGLGraph() g3.add_nodes(1) # no edges g = dgl.batch([g1, g3, g2]) # should not throw an error """ if __name__ == '__main__': test_batch_unbatch() test_batch_unbatch1() test_batched_edge_ordering() test_batch_sendrecv() test_batch_propagate() test_batch_no_edge()