Simple Graph Convolution (SGC) ============ - Paper link: [Simplifying Graph Convolutional Networks](https://arxiv.org/abs/1902.07153) - Author's code repo: [https://github.com/Tiiiger/SGC](https://github.com/Tiiiger/SGC). Dependencies ------------ - PyTorch 0.4.1+ - requests ``bash pip install torch requests `` Codes ----- The folder contains an implementation of SGC (`sgc.py`). Results ------- Run with following (available dataset: "cora", "citeseer", "pubmed") ```bash python sgc.py --dataset cora --gpu 0 python sgc.py --dataset citeseer --weight-decay 5e-5 --n-epochs 150 --bias --gpu 0 python sgc.py --dataset pubmed --weight-decay 5e-5 --bias --gpu 0 ``` On NVIDIA V100 * cora: 0.819 (paper: 0.810), 0.0008s/epoch * citeseer: 0.725 (paper: 0.719), 0.0008s/epoch * pubmed: 0.788 (paper: 0.789), 0.0007s/epoch