/*! * Copyright (c) 2020 by Contributors * \file array/cuda/spmm.cuh * \brief SPMM CUDA kernel function header. */ #ifndef DGL_ARRAY_CUDA_SPMM_CUH_ #define DGL_ARRAY_CUDA_SPMM_CUH_ #include #include "macro.cuh" #include "atomic.cuh" #include "../../runtime/cuda/cuda_common.h" #include "./utils.h" namespace dgl { using namespace cuda; namespace aten { namespace cuda { /*! * \brief CUDA Kernel of filling the vector started from ptr of size length * with val. * \note internal use only. */ template __global__ void _FillKernel(DType* ptr, size_t length, DType val) { int tx = blockIdx.x * blockDim.x + threadIdx.x; int stride_x = gridDim.x * blockDim.x; while (tx < length) { ptr[tx] = val; tx += stride_x; } } /*! * \brief CUDA kernel of g-SpMM on Coo format. * \note it uses edge parallel strategy, different threadblocks (on y-axis) * is responsible for the computation on different edges. Threadblocks * on the x-axis are responsible for the computation on different positions * in feature dimension. * To avoid possible data hazards, it uses atomic operators for reduction. */ template __global__ void SpMMCooKernel( const DType *ufeat, const DType *efeat, DType *out, Idx *arg_u, Idx *arg_e, const Idx *row, const Idx *col, const Idx* edge_map, int64_t N, int64_t M, int64_t E, int64_t *ubcast_off, int64_t *ebcast_off, int64_t ufeat_len, int64_t efeat_len, int64_t out_len) { // SPMM with COO. Idx ty = blockIdx.y * blockDim.y + threadIdx.y; const Idx stride_y = blockDim.y * gridDim.y; while (ty < E) { const Idx src = _ldg(row + ty); const Idx dst = _ldg(col + ty); const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty; int64_t tx = blockIdx.x * blockDim.x + threadIdx.x; const int64_t stride_x = blockDim.x * gridDim.x; const DType* uoff = BinaryOp::use_lhs ? (ufeat + src * ufeat_len): nullptr; const DType* eoff = BinaryOp::use_rhs ? (efeat + eid * efeat_len): nullptr; DType* outoff = out + dst * out_len; while (tx < out_len) { const int64_t lhs_add = UseBcast ? ubcast_off[tx] : tx; const int64_t rhs_add = UseBcast ? ebcast_off[tx] : tx; DType val = BinaryOp::Call(uoff + lhs_add, eoff + rhs_add); Idx* arguoff = nullptr; // arguoff is not used in SpMMCoo. Idx* argeoff = nullptr; // argeoff is not used in SpMMCoo. ReduceOp::Call(outoff + tx, arguoff, argeoff, val, src, eid); tx += stride_x; } ty += stride_y; } } /*! * \brief CUDA kernel to compute argu and arge in g-SpMM on Coo format. * \note it uses edge parallel strategy, different threadblocks (on y-axis) * is responsible for the computation on different edges. Threadblocks * on the x-axis are responsible for the computation on different positions * in feature dimension. */ template __global__ void ArgSpMMCooKernel( const DType *ufeat, const DType *efeat, DType *out, Idx *arg_u, Idx *arg_e, const Idx *row, const Idx *col, const Idx* edge_map, int64_t N, int64_t M, int64_t E, int64_t *ubcast_off, int64_t *ebcast_off, int64_t ufeat_len, int64_t efeat_len, int64_t out_len) { // SPMM with COO arg max/min. Idx ty = blockIdx.y * blockDim.y + threadIdx.y; const Idx stride_y = blockDim.y * gridDim.y; while (ty < E) { const Idx src = _ldg(row + ty); const Idx dst = _ldg(col + ty); const Idx eid = UseIdx ? _ldg(edge_map + ty) : ty; int64_t tx = blockIdx.x * blockDim.x + threadIdx.x; const int64_t stride_x = blockDim.x * gridDim.x; const DType* uoff = BinaryOp::use_lhs ? (ufeat + src * ufeat_len): nullptr; const DType* eoff = BinaryOp::use_rhs ? (efeat + eid * efeat_len): nullptr; const DType* outoff = out + dst * out_len; Idx* arguoff = BinaryOp::use_lhs ? (arg_u + dst * out_len): nullptr; Idx* argeoff = BinaryOp::use_rhs ? (arg_e + dst * out_len): nullptr; while (tx < out_len) { int64_t lhs_add = UseBcast ? ubcast_off[tx] : tx; int64_t rhs_add = UseBcast ? ebcast_off[tx] : tx; DType val = BinaryOp::Call(uoff + lhs_add, eoff + rhs_add); ReduceOp::CallArg(tx, arguoff, argeoff, val, outoff[tx], src, eid); tx += stride_x; } ty += stride_y; } } /*! * \brief CUDA kernel of g-SpMM on Coo format. * \note it uses node parallel strategy, different threadblocks (on y-axis) * is responsible for the computation on different destination nodes. * Threadblocks on the x-axis are responsible for the computation on * different positions in feature dimension. */ template __global__ void SpMMCsrKernel( const DType *ufeat, const DType *efeat, DType *out, Idx *arg_u, Idx *arg_e, const Idx *indptr, const Idx *indices, const Idx *edge_map, int64_t num_rows, int64_t num_cols, int64_t nnz, int64_t *ubcast_off, int64_t *ebcast_off, int64_t ufeat_len, int64_t efeat_len, int64_t out_len) { // SPMM with CSR. int ty = blockIdx.y * blockDim.y + threadIdx.y; const Idx stride_y = blockDim.y * gridDim.y; const int stride_x = blockDim.x * gridDim.x; while (ty < num_rows) { int tx = blockIdx.x * blockDim.x + threadIdx.x; while (tx < out_len) { DType local_accum = ReduceOp::zero; Idx local_argu = 0, local_arge = 0; const int lhs_add = UseBcast ? ubcast_off[tx] : tx; const int rhs_add = UseBcast ? ebcast_off[tx] : tx; for (Idx i = indptr[ty]; i < indptr[ty + 1]; ++i) { const Idx eid = UseIdx ? _ldg(edge_map + i) : i; const Idx cid = _ldg(indices + i); const DType* uoff = BinaryOp::use_lhs ? (ufeat + cid * ufeat_len): nullptr; const DType* eoff = BinaryOp::use_rhs ? (efeat + eid * efeat_len): nullptr; DType out = BinaryOp::Call(uoff + lhs_add, eoff + rhs_add); ReduceOp::Call(&local_accum, &local_argu, &local_arge, out, cid, eid); } out[ty * out_len + tx] = local_accum; if (ReduceOp::require_arg && BinaryOp::use_lhs) arg_u[ty * out_len + tx] = local_argu; if (ReduceOp::require_arg && BinaryOp::use_rhs) arg_e[ty * out_len + tx] = local_arge; tx += stride_x; } ty += stride_y; } } /*! * \brief CUDA implementation of g-SpMM on Coo format. * \param bcast Broadcast information. * \param coo The Coo matrix. * \param ufeat The feature on source nodes. * \param efeat The feature on edges. * \param out The result feature on destination nodes. * \param argu Arg-Min/Max on source nodes, which refers the source node indices * correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max reducer. * \param arge Arg-Min/Max on edges. which refers the source node indices * correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max reducer. */ template void SpMMCoo( const BcastOff& bcast, const COOMatrix& coo, NDArray ufeat, NDArray efeat, NDArray out, NDArray argu, NDArray arge) { const Idx *row = coo.row.Ptr(), *col = coo.col.Ptr(), *edge_map = coo.data.Ptr(); const DType *ufeat_data = ufeat.Ptr(), *efeat_data = efeat.Ptr(); DType *out_data = out.Ptr(); Idx *argu_data = argu.Ptr(), *arge_data = arge.Ptr(); auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal(); const int64_t N = coo.num_rows, M = coo.num_cols, E = coo.row->shape[0]; int64_t *ubcast_off = nullptr, *ebcast_off = nullptr; int64_t len = bcast.out_len, lhs_len = bcast.lhs_len, rhs_len = bcast.rhs_len; int64_t out_size = out.NumElements(); const int nt = FindNumThreads(out_size); const int nb = (out_size + nt - 1) / nt; _FillKernel<<stream>>>(out_data, out_size, ReduceOp::zero); const int ntx = FindNumThreads(len); const int nty = CUDA_MAX_NUM_THREADS / ntx; const int nbx = (len + ntx - 1) / ntx; const int nby = FindNumBlocks<'y'>((E + nty - 1) / nty); //LOG(INFO) << "nblks=(" << nbx << ", " << nby << ") nthrs=(" << ntx << ", " << nty << ")"; const dim3 nblks(nbx, nby); const dim3 nthrs(ntx, nty); const bool use_idx = !IsNullArray(coo.data); BCAST_IDX_CTX_SWITCH(bcast, use_idx, ufeat->ctx, ubcast_off, ebcast_off, { SpMMCooKernel <<stream>>>( ufeat_data, efeat_data, out_data, argu_data, arge_data, row, col, edge_map, N, M, E, ubcast_off, ebcast_off, lhs_len, rhs_len, len ); if (ReduceOp::require_arg) { ArgSpMMCooKernel <<stream>>>( ufeat_data, efeat_data, out_data, argu_data, arge_data, row, col, edge_map, N, M, E, ubcast_off, ebcast_off, lhs_len, rhs_len, len ); } }); } /*! * \brief CUDA implementation of g-SpMM on Csr format. * \param bcast Broadcast information. * \param csr The Csr matrix. * \param ufeat The feature on source nodes. * \param efeat The feature on edges. * \param out The result feature on destination nodes. * \param argu Arg-Min/Max on source nodes, which refers the source node indices * correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max reducer. * \param arge Arg-Min/Max on edges. which refers the source node indices * correspond to the minimum/maximum values of reduction result on * destination nodes. It's useful in computing gradients of Min/Max reducer. */ template void SpMMCsr( const BcastOff& bcast, const CSRMatrix& csr, NDArray ufeat, NDArray efeat, NDArray out, NDArray argu, NDArray arge) { const Idx *indptr = csr.indptr.Ptr(); const Idx *indices = csr.indices.Ptr(); const Idx *edge_map = csr.data.Ptr(); const DType *ufeat_data = ufeat.Ptr(); const DType *efeat_data = efeat.Ptr(); DType *out_data = out.Ptr(); Idx* argu_data = argu.Ptr(); Idx* arge_data = arge.Ptr(); auto* thr_entry = runtime::CUDAThreadEntry::ThreadLocal(); int64_t *ubcast_off = nullptr, *ebcast_off = nullptr; int64_t len = bcast.out_len, lhs_len = bcast.lhs_len, rhs_len = bcast.rhs_len; const int ntx = FindNumThreads(len); const int nty = CUDA_MAX_NUM_THREADS / ntx; const int nbx = (len + ntx - 1) / ntx; const int nby = FindNumBlocks<'y'>((csr.num_rows + nty - 1) / nty); //LOG(INFO) << "nblks=(" << nbx << ", " << nby << ") nthrs=(" << ntx << ", " << nty << ")"; const dim3 nblks(nbx, nby); const dim3 nthrs(ntx, nty); const bool use_idx = !IsNullArray(csr.data); BCAST_IDX_CTX_SWITCH(bcast, use_idx, ufeat->ctx, ubcast_off, ebcast_off, { SpMMCsrKernel <<stream>>>( ufeat_data, efeat_data, out_data, argu_data, arge_data, indptr, indices, edge_map, csr.num_rows, csr.num_cols, efeat->shape[0], ubcast_off, ebcast_off, lhs_len, rhs_len, len ); }); } } // namespace cuda } // namespace aten } // namespace dgl #endif