""" ****************NOTE***************** CREDITS : Thomas Kipf since datasets are the same as those in kipf's implementation, Their preprocessing source was used as-is. ************************************* """ import pickle as pkl import sys import networkx as nx import numpy as np import scipy.sparse as sp def parse_index_file(filename): index = [] for line in open(filename): index.append(int(line.strip())) return index def load_data(dataset): # load the data: x, tx, allx, graph names = ["x", "tx", "allx", "graph"] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset, names[i]), "rb") as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding="latin1")) else: objects.append(pkl.load(f)) x, tx, allx, graph = tuple(objects) test_idx_reorder = parse_index_file( "data/ind.{}.test.index".format(dataset) ) test_idx_range = np.sort(test_idx_reorder) if dataset == "citeseer": # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range( min(test_idx_reorder), max(test_idx_reorder) + 1 ) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) return adj, features