import argparse import random import numpy as np import pandas as pd import scipy.sparse as sp import torch import torch.nn as nn from load_data import * from model import * from sensors2graph import * from sklearn.preprocessing import StandardScaler from utils import * import dgl parser = argparse.ArgumentParser(description="STGCN_WAVE") parser.add_argument("--lr", default=0.001, type=float, help="learning rate") parser.add_argument("--disablecuda", action="store_true", help="Disable CUDA") parser.add_argument( "--batch_size", type=int, default=50, help="batch size for training and validation (default: 50)", ) parser.add_argument( "--epochs", type=int, default=50, help="epochs for training (default: 50)" ) parser.add_argument( "--num_layers", type=int, default=9, help="number of layers" ) parser.add_argument("--window", type=int, default=144, help="window length") parser.add_argument( "--sensorsfilepath", type=str, default="./data/sensor_graph/graph_sensor_ids.txt", help="sensors file path", ) parser.add_argument( "--disfilepath", type=str, default="./data/sensor_graph/distances_la_2012.csv", help="distance file path", ) parser.add_argument( "--tsfilepath", type=str, default="./data/metr-la.h5", help="ts file path" ) parser.add_argument( "--savemodelpath", type=str, default="stgcnwavemodel.pt", help="save model path", ) parser.add_argument( "--pred_len", type=int, default=5, help="how many steps away we want to predict", ) parser.add_argument( "--control_str", type=str, default="TNTSTNTST", help="model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer", ) parser.add_argument( "--channels", type=int, nargs="+", default=[1, 16, 32, 64, 32, 128], help="model strcture controller, T: Temporal Layer, S: Spatio Layer, N: Norm Layer", ) args = parser.parse_args() device = ( torch.device("cuda") if torch.cuda.is_available() and not args.disablecuda else torch.device("cpu") ) with open(args.sensorsfilepath) as f: sensor_ids = f.read().strip().split(",") distance_df = pd.read_csv(args.disfilepath, dtype={"from": "str", "to": "str"}) adj_mx = get_adjacency_matrix(distance_df, sensor_ids) sp_mx = sp.coo_matrix(adj_mx) G = dgl.from_scipy(sp_mx) df = pd.read_hdf(args.tsfilepath) num_samples, num_nodes = df.shape tsdata = df.to_numpy() n_his = args.window save_path = args.savemodelpath n_pred = args.pred_len n_route = num_nodes blocks = args.channels # blocks = [1, 16, 32, 64, 32, 128] drop_prob = 0 num_layers = args.num_layers batch_size = args.batch_size epochs = args.epochs lr = args.lr W = adj_mx len_val = round(num_samples * 0.1) len_train = round(num_samples * 0.7) train = df[:len_train] val = df[len_train : len_train + len_val] test = df[len_train + len_val :] scaler = StandardScaler() train = scaler.fit_transform(train) val = scaler.transform(val) test = scaler.transform(test) x_train, y_train = data_transform(train, n_his, n_pred, device) x_val, y_val = data_transform(val, n_his, n_pred, device) x_test, y_test = data_transform(test, n_his, n_pred, device) train_data = torch.utils.data.TensorDataset(x_train, y_train) train_iter = torch.utils.data.DataLoader(train_data, batch_size, shuffle=True) val_data = torch.utils.data.TensorDataset(x_val, y_val) val_iter = torch.utils.data.DataLoader(val_data, batch_size) test_data = torch.utils.data.TensorDataset(x_test, y_test) test_iter = torch.utils.data.DataLoader(test_data, batch_size) loss = nn.MSELoss() G = G.to(device) model = STGCN_WAVE( blocks, n_his, n_route, G, drop_prob, num_layers, device, args.control_str ).to(device) optimizer = torch.optim.RMSprop(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.7) min_val_loss = np.inf for epoch in range(1, epochs + 1): l_sum, n = 0.0, 0 model.train() for x, y in train_iter: y_pred = model(x).view(len(x), -1) l = loss(y_pred, y) optimizer.zero_grad() l.backward() optimizer.step() l_sum += l.item() * y.shape[0] n += y.shape[0] scheduler.step() val_loss = evaluate_model(model, loss, val_iter) if val_loss < min_val_loss: min_val_loss = val_loss torch.save(model.state_dict(), save_path) print( "epoch", epoch, ", train loss:", l_sum / n, ", validation loss:", val_loss, ) best_model = STGCN_WAVE( blocks, n_his, n_route, G, drop_prob, num_layers, device, args.control_str ).to(device) best_model.load_state_dict(torch.load(save_path)) l = evaluate_model(best_model, loss, test_iter) MAE, MAPE, RMSE = evaluate_metric(best_model, test_iter, scaler) print("test loss:", l, "\nMAE:", MAE, ", MAPE:", MAPE, ", RMSE:", RMSE)