import os import urllib.request import numpy as np import torch from sudoku import SudokuNN from sudoku_data import _basic_sudoku_graph def solve_sudoku(puzzle): """ Solve sudoku puzzle using RRN. :param puzzle: an array-like data with shape [9, 9], blank positions are filled with 0 :return: a [9, 9] shaped numpy array """ puzzle = np.array(puzzle, dtype=np.long).reshape([-1]) model_path = "ckpt" if not os.path.exists(model_path): os.mkdir(model_path) model_filename = os.path.join(model_path, "rrn-sudoku.pkl") if not os.path.exists(model_filename): print("Downloading model...") url = "https://data.dgl.ai/models/rrn-sudoku.pkl" urllib.request.urlretrieve(url, model_filename) model = SudokuNN(num_steps=64, edge_drop=0.0) model.load_state_dict(torch.load(model_filename, map_location="cpu")) model.eval() g = _basic_sudoku_graph() sudoku_indices = np.arange(0, 81) rows = sudoku_indices // 9 cols = sudoku_indices % 9 g.ndata["row"] = torch.tensor(rows, dtype=torch.long) g.ndata["col"] = torch.tensor(cols, dtype=torch.long) g.ndata["q"] = torch.tensor(puzzle, dtype=torch.long) g.ndata["a"] = torch.tensor(puzzle, dtype=torch.long) pred, _ = model(g, False) pred = pred.cpu().data.numpy().reshape([9, 9]) return pred if __name__ == "__main__": q = [ [9, 7, 0, 4, 0, 2, 0, 5, 3], [0, 4, 6, 0, 9, 0, 0, 0, 0], [0, 0, 8, 6, 0, 1, 4, 0, 7], [0, 0, 0, 0, 0, 3, 5, 0, 0], [7, 6, 0, 0, 0, 0, 0, 8, 2], [0, 0, 2, 8, 0, 0, 0, 0, 0], [6, 0, 5, 1, 0, 7, 2, 0, 0], [0, 0, 0, 0, 6, 0, 7, 4, 0], [4, 3, 0, 2, 0, 9, 0, 6, 1], ] answer = solve_sudoku(q) print(answer)