""" Script that reads from raw MovieLens-1M data and dumps into a pickle file the following: * A heterogeneous graph with categorical features. * A list with all the movie titles. The movie titles correspond to the movie nodes in the heterogeneous graph. This script exemplifies how to prepare tabular data with textual features. Since DGL graphs do not store variable-length features, we instead put variable-length features into a more suitable container (e.g. torchtext to handle list of texts) """ import argparse import os import pickle import re import numpy as np import pandas as pd import scipy.sparse as ssp import torch import torchtext from builder import PandasGraphBuilder from data_utils import * import dgl if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("directory", type=str) parser.add_argument("out_directory", type=str) args = parser.parse_args() directory = args.directory out_directory = args.out_directory os.makedirs(out_directory, exist_ok=True) ## Build heterogeneous graph # Load data users = [] with open(os.path.join(directory, "users.dat"), encoding="latin1") as f: for l in f: id_, gender, age, occupation, zip_ = l.strip().split("::") users.append( { "user_id": int(id_), "gender": gender, "age": age, "occupation": occupation, "zip": zip_, } ) users = pd.DataFrame(users).astype("category") movies = [] with open(os.path.join(directory, "movies.dat"), encoding="latin1") as f: for l in f: id_, title, genres = l.strip().split("::") genres_set = set(genres.split("|")) # extract year assert re.match(r".*\([0-9]{4}\)$", title) year = title[-5:-1] title = title[:-6].strip() data = {"movie_id": int(id_), "title": title, "year": year} for g in genres_set: data[g] = True movies.append(data) movies = pd.DataFrame(movies).astype({"year": "category"}) ratings = [] with open(os.path.join(directory, "ratings.dat"), encoding="latin1") as f: for l in f: user_id, movie_id, rating, timestamp = [ int(_) for _ in l.split("::") ] ratings.append( { "user_id": user_id, "movie_id": movie_id, "rating": rating, "timestamp": timestamp, } ) ratings = pd.DataFrame(ratings) # Filter the users and items that never appear in the rating table. distinct_users_in_ratings = ratings["user_id"].unique() distinct_movies_in_ratings = ratings["movie_id"].unique() users = users[users["user_id"].isin(distinct_users_in_ratings)] movies = movies[movies["movie_id"].isin(distinct_movies_in_ratings)] # Group the movie features into genres (a vector), year (a category), title (a string) genre_columns = movies.columns.drop(["movie_id", "title", "year"]) movies[genre_columns] = movies[genre_columns].fillna(False).astype("bool") movies_categorical = movies.drop("title", axis=1) # Build graph graph_builder = PandasGraphBuilder() graph_builder.add_entities(users, "user_id", "user") graph_builder.add_entities(movies_categorical, "movie_id", "movie") graph_builder.add_binary_relations( ratings, "user_id", "movie_id", "watched" ) graph_builder.add_binary_relations( ratings, "movie_id", "user_id", "watched-by" ) g = graph_builder.build() # Assign features. # Note that variable-sized features such as texts or images are handled elsewhere. g.nodes["user"].data["gender"] = torch.LongTensor( users["gender"].cat.codes.values ) g.nodes["user"].data["age"] = torch.LongTensor( users["age"].cat.codes.values ) g.nodes["user"].data["occupation"] = torch.LongTensor( users["occupation"].cat.codes.values ) g.nodes["user"].data["zip"] = torch.LongTensor( users["zip"].cat.codes.values ) g.nodes["movie"].data["year"] = torch.LongTensor( movies["year"].cat.codes.values ) g.nodes["movie"].data["genre"] = torch.FloatTensor( movies[genre_columns].values ) g.edges["watched"].data["rating"] = torch.LongTensor( ratings["rating"].values ) g.edges["watched"].data["timestamp"] = torch.LongTensor( ratings["timestamp"].values ) g.edges["watched-by"].data["rating"] = torch.LongTensor( ratings["rating"].values ) g.edges["watched-by"].data["timestamp"] = torch.LongTensor( ratings["timestamp"].values ) # Train-validation-test split # This is a little bit tricky as we want to select the last interaction for test, and the # second-to-last interaction for validation. train_indices, val_indices, test_indices = train_test_split_by_time( ratings, "timestamp", "user_id" ) # Build the graph with training interactions only. train_g = build_train_graph( g, train_indices, "user", "movie", "watched", "watched-by" ) assert train_g.out_degrees(etype="watched").min() > 0 # Build the user-item sparse matrix for validation and test set. val_matrix, test_matrix = build_val_test_matrix( g, val_indices, test_indices, "user", "movie", "watched" ) ## Build title set movie_textual_dataset = {"title": movies["title"].values} # The model should build their own vocabulary and process the texts. Here is one example # of using torchtext to pad and numericalize a batch of strings. # field = torchtext.data.Field(include_lengths=True, lower=True, batch_first=True) # examples = [torchtext.data.Example.fromlist([t], [('title', title_field)]) for t in texts] # titleset = torchtext.data.Dataset(examples, [('title', title_field)]) # field.build_vocab(titleset.title, vectors='fasttext.simple.300d') # token_ids, lengths = field.process([examples[0].title, examples[1].title]) ## Dump the graph and the datasets dgl.save_graphs(os.path.join(out_directory, "train_g.bin"), train_g) dataset = { "val-matrix": val_matrix, "test-matrix": test_matrix, "item-texts": movie_textual_dataset, "item-images": None, "user-type": "user", "item-type": "movie", "user-to-item-type": "watched", "item-to-user-type": "watched-by", "timestamp-edge-column": "timestamp", } with open(os.path.join(out_directory, "data.pkl"), "wb") as f: pickle.dump(dataset, f)