/*! * Copyright (c) 2019 by Contributors * \file random/choice.cc * \brief Non-uniform discrete sampling implementation */ #include #include #include #include #include "sample_utils.h" namespace dgl { template IdxType RandomEngine::Choice(FloatArray prob) { IdxType ret = 0; ATEN_FLOAT_TYPE_SWITCH(prob->dtype, ValueType, "probability", { // TODO(minjie): allow choosing different sampling algorithms utils::TreeSampler sampler(this, prob); ret = sampler.Draw(); }); return ret; } template int32_t RandomEngine::Choice(FloatArray); template int64_t RandomEngine::Choice(FloatArray); template void RandomEngine::Choice(IdxType num, FloatArray prob, IdxType* out, bool replace) { const IdxType N = prob->shape[0]; if (!replace) CHECK_LE(num, N) << "Cannot take more sample than population when 'replace=false'"; if (num == N && !replace) std::iota(out, out + num, 0); utils::BaseSampler* sampler = nullptr; if (replace) { sampler = new utils::TreeSampler(this, prob); } else { sampler = new utils::TreeSampler(this, prob); } for (IdxType i = 0; i < num; ++i) out[i] = sampler->Draw(); delete sampler; } template void RandomEngine::Choice(int32_t num, FloatArray prob, int32_t* out, bool replace); template void RandomEngine::Choice(int64_t num, FloatArray prob, int64_t* out, bool replace); template void RandomEngine::Choice(int32_t num, FloatArray prob, int32_t* out, bool replace); template void RandomEngine::Choice(int64_t num, FloatArray prob, int64_t* out, bool replace); template void RandomEngine::UniformChoice(IdxType num, IdxType population, IdxType* out, bool replace) { if (!replace) CHECK_LE(num, population) << "Cannot take more sample than population when 'replace=false'"; if (replace) { for (IdxType i = 0; i < num; ++i) out[i] = RandInt(population); } else { if (num < population / 10) { // TODO(minjie): may need a better threshold here // if set of numbers is small (up to 128) use linear search to verify // uniqueness this operation is cheaper for CPU. if (num && num < 64) { *out = RandInt(population); auto b = out + 1; auto e = b + num - 1; while (b != e) { // put the new value at the end *b = RandInt(population); // Check if a new value doesn't exist in current range(out,b) // otherwise get a new value until we haven't unique range of // elements. auto it = std::find(out, b, *b); if (it != b) continue; ++b; } } else { // use hash set // In the best scenario, time complexity is O(num), i.e., no conflict. // // Let k be num / population, the expected number of extra sampling // steps is roughly k^2 / (1-k) * population, which means in the worst // case scenario, the time complexity is O(population^2). In practice, // we use 1/10 since std::unordered_set is pretty slow. std::unordered_set selected; while (selected.size() < num) { selected.insert(RandInt(population)); } std::copy(selected.begin(), selected.end(), out); } } else { // reservoir algorithm // time: O(population), space: O(num) for (IdxType i = 0; i < num; ++i) out[i] = i; for (IdxType i = num; i < population; ++i) { const IdxType j = RandInt(i + 1); if (j < num) out[j] = i; } } } } template void RandomEngine::UniformChoice(int32_t num, int32_t population, int32_t* out, bool replace); template void RandomEngine::UniformChoice(int64_t num, int64_t population, int64_t* out, bool replace); }; // namespace dgl