from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import numpy as np from math import sin, cos, radians, pi import argparse ''' This adapted from comes from https://github.com/jsikyoon/Interaction-networks_tensorflow which generates multi-body dynamic simulation data for Interaction network ''' # 5 features on the state [mass,x,y,x_vel,y_vel] fea_num = 5 # G stand for Gravity constant 10**5 can help numerical stability G = 10**5 # time step diff_t = 0.001 def init(total_state, n_body, fea_num, orbit): data = np.zeros((total_state, n_body, fea_num), dtype=float) if(orbit): data[0][0][0] = 100 data[0][0][1:5] = 0.0 # The position are initialized randomly. for i in range(1, n_body): data[0][i][0] = np.random.rand()*8.98+0.02 distance = np.random.rand()*90.0+10.0 theta = np.random.rand()*360 theta_rad = pi/2 - radians(theta) data[0][i][1] = distance*cos(theta_rad) data[0][i][2] = distance*sin(theta_rad) data[0][i][3] = -1*data[0][i][2]/norm(data[0][i][1:3])*( G*data[0][0][0]/norm(data[0][i][1:3])**2)*distance/1000 data[0][i][4] = data[0][i][1]/norm(data[0][i][1:3])*( G*data[0][0][0]/norm(data[0][i][1:3])**2)*distance/1000 else: for i in range(n_body): data[0][i][0] = np.random.rand()*8.98+0.02 distance = np.random.rand()*90.0+10.0 theta = np.random.rand()*360 theta_rad = pi/2 - radians(theta) data[0][i][1] = distance*cos(theta_rad) data[0][i][2] = distance*sin(theta_rad) data[0][i][3] = np.random.rand()*6.0-3.0 data[0][i][4] = np.random.rand()*6.0-3.0 return data def norm(x): return np.sqrt(np.sum(x**2)) def get_f(reciever, sender): diff = sender[1:3]-reciever[1:3] distance = norm(diff) if(distance < 1): distance = 1 return G*reciever[0]*sender[0]/(distance**3)*diff # Compute stat according to the paper for normalization def compute_stats(train_curr): data = np.vstack(train_curr).reshape(-1, fea_num) stat_median = np.median(data, axis=0) stat_max = np.quantile(data, 0.95, axis=0) stat_min = np.quantile(data, 0.05, axis=0) return stat_median, stat_max, stat_min def calc(cur_state, n_body): next_state = np.zeros((n_body, fea_num), dtype=float) f_mat = np.zeros((n_body, n_body, 2), dtype=float) f_sum = np.zeros((n_body, 2), dtype=float) acc = np.zeros((n_body, 2), dtype=float) for i in range(n_body): for j in range(i+1, n_body): if(j != i): f = get_f(cur_state[i][:3], cur_state[j][:3]) f_mat[i, j] += f f_mat[j, i] -= f f_sum[i] = np.sum(f_mat[i], axis=0) acc[i] = f_sum[i]/cur_state[i][0] next_state[i][0] = cur_state[i][0] next_state[i][3:5] = cur_state[i][3:5]+acc[i]*diff_t next_state[i][1:3] = cur_state[i][1:3]+next_state[i][3:5]*diff_t return next_state # The state is [mass,pos_x,pos_y,vel_x,vel_y]* n_body def gen(n_body, num_steps, orbit): # initialization on just first state data = init(num_steps, n_body, fea_num, orbit) for i in range(1, num_steps): data[i] = calc(data[i-1], n_body) return data if __name__ == '__main__': argparser = argparse.ArgumentParser() argparser.add_argument('--num_bodies', type=int, default=6) argparser.add_argument('--num_traj', type=int, default=10) argparser.add_argument('--steps', type=int, default=1000) argparser.add_argument('--data_path', type=str, default='data') args = argparser.parse_args() if not os.path.exists(args.data_path): os.mkdir(args.data_path) # Generate data data_curr = [] data_next = [] for i in range(args.num_traj): raw_traj = gen(args.num_bodies, args.steps, True) data_curr.append(raw_traj[:-1]) data_next.append(raw_traj[1:]) print("Train Traj: ", i) # Compute normalization statistic from data stat_median, stat_max, stat_min = compute_stats(data_curr) data = np.vstack(data_curr) label = np.vstack(data_next)[:, :, 3:5] shuffle_idx = np.arange(data.shape[0]) np.random.shuffle(shuffle_idx) train_split = int(0.9*data.shape[0]) valid_split = train_split+300 data = data[shuffle_idx] label = label[shuffle_idx] train_data = data[:train_split] train_label = label[:train_split] valid_data = data[train_split:valid_split] valid_label = label[train_split:valid_split] test_data = data[valid_split:] test_label = label[valid_split:] np.savez(args.data_path+'/n_body_train.npz', data=train_data, label=train_label, n_particles=args.num_bodies, median=stat_median, max=stat_max, min=stat_min) np.savez(args.data_path+'/n_body_valid.npz', data=valid_data, label=valid_label, n_particles=args.num_bodies) test_traj = gen(args.num_bodies, args.steps, True) np.savez(args.data_path+'/n_body_test.npz', data=test_data, label=test_label, n_particles=args.num_bodies, first_frame=test_traj[0], test_traj=test_traj)