import sys from parser import Parser import mxnet as mx import numpy as np from dataloader import GraphDataLoader, collate from gin import GIN from mxnet import gluon, nd from mxnet.gluon import nn from tqdm import tqdm from dgl.data.gindt import GINDataset def train(args, net, trainloader, trainer, criterion, epoch): running_loss = 0 total_iters = len(trainloader) # setup the offset to avoid the overlap with mouse cursor bar = tqdm(range(total_iters), unit="batch", position=2, file=sys.stdout) for pos, (graphs, labels) in zip(bar, trainloader): # batch graphs will be shipped to device in forward part of model labels = labels.as_in_context(args.device) feat = graphs.ndata["attr"].as_in_context(args.device) with mx.autograd.record(): graphs = graphs.to(args.device) outputs = net(graphs, feat) loss = criterion(outputs, labels) loss = loss.sum() / len(labels) running_loss += loss.asscalar() # backprop loss.backward() trainer.step(batch_size=1) # report bar.set_description("epoch-{}".format(epoch)) bar.close() # the final batch will be aligned running_loss = running_loss / total_iters return running_loss def eval_net(args, net, dataloader, criterion): total = 0 total_loss = 0 total_correct = 0 for data in dataloader: graphs, labels = data labels = labels.as_in_context(args.device) feat = graphs.ndata["attr"].as_in_context(args.device) total += len(labels) graphs = graphs.to(args.device) outputs = net(graphs, feat) predicted = nd.argmax(outputs, axis=1) predicted = predicted.astype("int64") total_correct += (predicted == labels).sum().asscalar() loss = criterion(outputs, labels) # crossentropy(reduce=True) for default total_loss += loss.sum().asscalar() loss, acc = 1.0 * total_loss / total, 1.0 * total_correct / total return loss, acc def main(args): # set up seeds, args.seed supported mx.random.seed(0) np.random.seed(seed=0) if args.device >= 0: args.device = mx.gpu(args.device) else: args.device = mx.cpu() dataset = GINDataset(args.dataset, not args.learn_eps) trainloader, validloader = GraphDataLoader( dataset, batch_size=args.batch_size, collate_fn=collate, seed=args.seed, shuffle=True, split_name="fold10", fold_idx=args.fold_idx, ).train_valid_loader() # or split_name='rand', split_ratio=0.7 model = GIN( args.num_layers, args.num_mlp_layers, dataset.dim_nfeats, args.hidden_dim, dataset.gclasses, args.final_dropout, args.learn_eps, args.graph_pooling_type, args.neighbor_pooling_type, ) model.initialize(ctx=args.device) criterion = gluon.loss.SoftmaxCELoss() print(model.collect_params()) lr_scheduler = mx.lr_scheduler.FactorScheduler(50, 0.5) trainer = gluon.Trainer( model.collect_params(), "adam", {"lr_scheduler": lr_scheduler} ) # it's not cost-effective to hanle the cursor and init 0 # https://stackoverflow.com/a/23121189 tbar = tqdm( range(args.epochs), unit="epoch", position=3, ncols=0, file=sys.stdout ) vbar = tqdm( range(args.epochs), unit="epoch", position=4, ncols=0, file=sys.stdout ) lrbar = tqdm( range(args.epochs), unit="epoch", position=5, ncols=0, file=sys.stdout ) for epoch, _, _ in zip(tbar, vbar, lrbar): train(args, model, trainloader, trainer, criterion, epoch) train_loss, train_acc = eval_net(args, model, trainloader, criterion) tbar.set_description( "train set - average loss: {:.4f}, accuracy: {:.0f}%".format( train_loss, 100.0 * train_acc ) ) valid_loss, valid_acc = eval_net(args, model, validloader, criterion) vbar.set_description( "valid set - average loss: {:.4f}, accuracy: {:.0f}%".format( valid_loss, 100.0 * valid_acc ) ) if not args.filename == "": with open(args.filename, "a") as f: f.write( "%s %s %s %s" % ( args.dataset, args.learn_eps, args.neighbor_pooling_type, args.graph_pooling_type, ) ) f.write("\n") f.write( "%f %f %f %f" % (train_loss, train_acc, valid_loss, valid_acc) ) f.write("\n") lrbar.set_description( "Learning eps with learn_eps={}: {}".format( args.learn_eps, [ layer.eps.data(args.device).asscalar() for layer in model.ginlayers ], ) ) tbar.close() vbar.close() lrbar.close() if __name__ == "__main__": args = Parser(description="GIN").args print("show all arguments configuration...") print(args) main(args)