.. _guide-data-pipeline: Graph data input pipeline in DGL ================================== DGL implements many commonly used graph datasets in :ref:`apidata`. They follow a standard pipeline defined in class :class:`dgl.data.DGLDataset`. We highly recommend processing graph data into a :class:`dgl.data.DGLDataset` subclass, as the pipeline provides simple and clean solution for loading, processing and saving graph data. This chapter introduces how to create a DGL-Dataset for our own graph data. The following contents explain how the pipeline works, and show how to implement each component of it. DGLDataset class -------------------- :class:`dgl.data.DGLDataset` is the base class for processing, loading and saving graph datasets defined in :ref:`apidata`. It implements the basic pipeline for processing graph data. The following flow chart shows how the pipeline works. To process a graph dataset located in a remote server or local disk, we define a class, say ``MyDataset``, inherits from :class:`dgl.data.DGLDataset`. The template of ``MyDataset`` is as follows. .. figure:: https://data.dgl.ai/asset/image/userguide_data_flow.png :align: center Flow chart for graph data input pipeline defined in class DGLDataset. .. code:: from dgl.data import DGLDataset class MyDataset(DGLDataset): """ Template for customizing graph datasets in DGL. Parameters ---------- url : str URL to download the raw dataset raw_dir : str Specifying the directory that will store the downloaded data or the directory that already stores the input data. Default: ~/.dgl/ save_dir : str Directory to save the processed dataset. Default: the value of `raw_dir` force_reload : bool Whether to reload the dataset. Default: False verbose : bool Whether to print out progress information """ def __init__(self, url=None, raw_dir=None, save_dir=None, force_reload=False, verbose=False): super(MyDataset, self).__init__(name='dataset_name', url=url, raw_dir=raw_dir, save_dir=save_dir, force_reload=force_reload, verbose=verbose) def download(self): # download raw data to local disk pass def process(self): # process raw data to graphs, labels, splitting masks pass def __getitem__(self, idx): # get one example by index pass def __len__(self): # number of data examples pass def save(self): # save processed data to directory `self.save_path` pass def load(self): # load processed data from directory `self.save_path` pass def has_cache(self): # check whether there are processed data in `self.save_path` pass :class:`dgl.data.DGLDataset` class has abstract functions ``process()``, ``__getitem__(idx)`` and ``__len__()`` that must be implemented in the subclass. But we recommend to implement saving and loading as well, since they can save significant time for processing large datasets, and there are several APIs making it easy (see :ref:`ref-save-load-data`). Note that the purpose of :class:`dgl.data.DGLDataset` is to provide a standard and convenient way to load graph data. We can store graphs, features, labels, masks and basic information about the dataset, such as number of classes, number of labels, etc. Operations such as sampling, partition or feature normalization are done outside of the :class:`dgl.data.DGLDataset` subclass. The rest of this chapter shows the best practices to implement the functions in the pipeline. Download raw data (optional) -------------------------------- If our dataset is already in local disk, make sure it’s in directory ``raw_dir``. If we want to run our code anywhere without bothering to download and move data to the right directory, we can do it automatically by implementing function ``download()``. If the dataset is a zip file, make ``MyDataset`` inherit from :class:`dgl.data.DGLBuiltinDataset` class, which handles the zip file extraction for us. Otherwise, implement ``download()`` like in :class:`dgl.data.QM7bDataset`: .. code:: import os from dgl.data.utils import download def download(self): # path to store the file file_path = os.path.join(self.raw_dir, self.name + '.mat') # download file download(self.url, path=file_path) The above code downloads a .mat file to directory ``self.raw_dir``. If the file is a .gz, .tar, .tar.gz or .tgz file, use :func:`dgl.data.utils.extract_archive` function to extract. The following code shows how to download a .gz file in :class:`dgl.data.BitcoinOTCDataset`: .. code:: from dgl.data.utils import download, extract_archive def download(self): # path to store the file # make sure to use the same suffix as the original file name's gz_file_path = os.path.join(self.raw_dir, self.name + '.csv.gz') # download file download(self.url, path=gz_file_path) # check SHA-1 if not check_sha1(gz_file_path, self._sha1_str): raise UserWarning('File {} is downloaded but the content hash does not match.' 'The repo may be outdated or download may be incomplete. ' 'Otherwise you can create an issue for it.'.format(self.name + '.csv.gz')) # extract file to directory `self.name` under `self.raw_dir` self._extract_gz(gz_file_path, self.raw_path) The above code will extract the file into directory ``self.name`` under ``self.raw_dir``. If the class inherits from :class:`dgl.data.DGLBuiltinDataset` to handle zip file, it will extract the file into directory ``self.name`` as well. Optionally, we can check SHA-1 string of the downloaded file as the example above does, in case the author changed the file in the remote server some day. Process data ---------------- We implement the data processing code in function ``process()``, and it assumes that the raw data is located in ``self.raw_dir`` already. There are typically three types of tasks in machine learning on graphs: graph classification, node classification, and link prediction. We will show how to process datasets related to these tasks. Here we focus on the standard way to process graphs, features and masks. We will use builtin datasets as examples and skip the implementations for building graphs from files, but add links to the detailed implementations. Please refer to `Creating graphs from external sources `__ to see a complete guide on how to build graphs from external sources. Processing Graph Classification datasets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Graph classification datasets are almost the same as most datasets in typical machine learning tasks, where mini-batch training is used. So we process the raw data to a list of :class:`dgl.DGLGraph` objects and a list of label tensors. In addition, if the raw data has been splitted into several files, we can add a parameter ``split`` to load specific part of the data. Take :class:`dgl.data.QM7bDataset` as example: .. code:: class QM7bDataset(DGLDataset): _url = 'http://deepchem.io.s3-website-us-west-1.amazonaws.com/' \ 'datasets/qm7b.mat' _sha1_str = '4102c744bb9d6fd7b40ac67a300e49cd87e28392' def __init__(self, raw_dir=None, force_reload=False, verbose=False): super(QM7bDataset, self).__init__(name='qm7b', url=self._url, raw_dir=raw_dir, force_reload=force_reload, verbose=verbose) def process(self): mat_path = self.raw_path + '.mat' # process data to a list of graphs and a list of labels self.graphs, self.label = self._load_graph(mat_path) def __getitem__(self, idx): """ Get graph and label by index Parameters ---------- idx : int Item index Returns ------- (dgl.DGLGraph, Tensor) """ return self.graphs[idx], self.label[idx] def __len__(self): """Number of graphs in the dataset""" return len(self.graphs) In ``process()``, the raw data is processed to a list of graphs and a list of labels. We must implement ``__getitem__(idx)`` and ``__len__()`` for iteration. We recommend to make ``__getitem__(idx)`` to return a tuple ``(graph, label)`` as above. Please check the `QM7bDataset source code `__ for details of ``self._load_graph()`` and ``__getitem__``. We can also add properties to the class to indicate some useful information of the dataset. In :class:`dgl.data.QM7bDataset`, we can add a property ``num_labels`` to indicate the total number of prediction tasks in this multi-task dataset: .. code:: @property def num_labels(self): """Number of labels for each graph, i.e. number of prediction tasks.""" return 14 After all these coding, we can finally use the :class:`dgl.data.QM7bDataset` as follows: .. code:: from torch.utils.data import DataLoader # load data dataset = QM7bDataset() num_labels = dataset.num_labels # create collate_fn def _collate_fn(batch): graphs, labels = batch g = dgl.batch(graphs) labels = torch.tensor(labels, dtype=torch.long) return g, labels # create dataloaders dataloader = DataLoader(dataset, batch_size=1, shuffle=True, collate_fn=_collate_fn) # training for epoch in range(100): for g, labels in dataloader: # your training code here pass A complete guide for training graph classification models can be found in `Training Graph Classification models `__. For more examples of graph classification datasets, please refer to our builtin graph classification datasets: * :ref:`gindataset` * :ref:`minigcdataset` * :ref:`qm7bdata` * :ref:`tudata` Processing Node Classification datasets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Different from graph classification, node classification is typically on a single graph. As such, splits of the dataset are on the nodes of the graph. We recommend using node masks to specify the splits. We use builtin dataset `CitationGraphDataset `__ as an example: .. code:: import dgl from dgl.data import DGLBuiltinDataset class CitationGraphDataset(DGLBuiltinDataset): _urls = { 'cora_v2' : 'dataset/cora_v2.zip', 'citeseer' : 'dataset/citeseer.zip', 'pubmed' : 'dataset/pubmed.zip', } def __init__(self, name, raw_dir=None, force_reload=False, verbose=True): assert name.lower() in ['cora', 'citeseer', 'pubmed'] if name.lower() == 'cora': name = 'cora_v2' url = _get_dgl_url(self._urls[name]) super(CitationGraphDataset, self).__init__(name, url=url, raw_dir=raw_dir, force_reload=force_reload, verbose=verbose) def process(self): # Skip some processing code # === data processing skipped === # build graph g = dgl.graph(graph) # splitting masks g.ndata['train_mask'] = generate_mask_tensor(train_mask) g.ndata['val_mask'] = generate_mask_tensor(val_mask) g.ndata['test_mask'] = generate_mask_tensor(test_mask) # node labels g.ndata['label'] = F.tensor(labels) # node features g.ndata['feat'] = F.tensor(_preprocess_features(features), dtype=F.data_type_dict['float32']) self._num_labels = onehot_labels.shape[1] self._labels = labels self._g = g def __getitem__(self, idx): assert idx == 0, "This dataset has only one graph" return self._g def __len__(self): return 1 For brevity, we skip some code in ``process()`` to highlight the key part for processing node classification dataset: spliting masks, node features and node labels are stored in ``g.ndata``. For detailed implementation, please refer to `CitationGraphDataset source code `__. Notice that the implementations of ``__getitem__(idx)`` and ``__len__()`` are changed as well, since there is often only one graph for node classification tasks. The masks are ``bool tensors`` in PyTorch and TensorFlow, and ``float tensors`` in MXNet. We use a subclass of ``CitationGraphDataset``, :class:`dgl.data.CiteseerGraphDataset`, to show the usage of it: .. code:: # load data dataset = CiteseerGraphDataset(raw_dir='') graph = dataset[0] # get split masks train_mask = graph.ndata['train_mask'] val_mask = graph.ndata['val_mask'] test_mask = graph.ndata['test_mask'] # get node features feats = graph.ndata['feat'] # get labels labels = graph.ndata['label'] A complete guide for training node classification models can be found in `Training Node Classification/Regression models `__. For more examples of node classification datasets, please refer to our builtin datasets: * :ref:`citationdata` * :ref:`corafulldata` * :ref:`amazoncobuydata` * :ref:`coauthordata` * :ref:`karateclubdata` * :ref:`ppidata` * :ref:`redditdata` * :ref:`sbmdata` * :ref:`sstdata` * :ref:`rdfdata` Processing dataset for Link Prediction datasets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The processing of link prediction datasets is similar to that for node classification’s, there is often one graph in the dataset. We use builtin dataset `KnowledgeGraphDataset `__ as example, and still skip the detailed data processing code to highlight the key part for processing link prediction datasets: .. code:: # Example for creating Link Prediction datasets class KnowledgeGraphDataset(DGLBuiltinDataset): def __init__(self, name, reverse=True, raw_dir=None, force_reload=False, verbose=True): self._name = name self.reverse = reverse url = _get_dgl_url('dataset/') + '{}.tgz'.format(name) super(KnowledgeGraphDataset, self).__init__(name, url=url, raw_dir=raw_dir, force_reload=force_reload, verbose=verbose) def process(self): # Skip some processing code # === data processing skipped === # splitting mask g.edata['train_mask'] = train_mask g.edata['val_mask'] = val_mask g.edata['test_mask'] = test_mask # edge type g.edata['etype'] = etype # node type g.ndata['ntype'] = ntype self._g = g def __getitem__(self, idx): assert idx == 0, "This dataset has only one graph" return self._g def __len__(self): return 1 As shown in the code, we add splitting masks into ``edata`` field of the graph. Check `KnowledgeGraphDataset source code `__ to see the complete code. We use a subclass of ``KnowledgeGraphDataset``, :class:`dgl.data.FB15k237Dataset`, to show the usage of it: .. code:: import torch # load data dataset = FB15k237Dataset() graph = dataset[0] # get training mask train_mask = graph.edata['train_mask'] train_idx = torch.nonzero(train_mask).squeeze() src, dst = graph.edges(train_idx) # get edge types in training set rel = graph.edata['etype'][train_idx] A complete guide for training link prediction models can be found in `Training Link Prediction models `__. For more examples of link prediction datasets, please refer to our builtin datasets: * :ref:`kgdata` * :ref:`bitcoinotcdata` .. _ref-save-load-data: Save and load data ---------------------- We recommend to implement saving and loading functions to cache the processed data in local disk. This saves a lot of data processing time in most cases. We provide four functions to make things simple: - :func:`dgl.save_graphs` and :func:`dgl.load_graphs`: save/load DGLGraph objects and labels to/from local disk. - :func:`dgl.data.utils.save_info` and :func:`dgl.data.utils.load_info`: save/load useful information of the dataset (python ``dict`` object) to/from local disk. The following example shows how to save and load a list of graphs and dataset information. .. code:: import os from dgl import save_graphs, load_graphs from dgl.data.utils import makedirs, save_info, load_info def save(self): # save graphs and labels graph_path = os.path.join(self.save_path, self.mode + '_dgl_graph.bin') save_graphs(graph_path, self.graphs, {'labels': self.labels}) # save other information in python dict info_path = os.path.join(self.save_path, self.mode + '_info.pkl') save_info(info_path, {'num_classes': self.num_classes}) def load(self): # load processed data from directory `self.save_path` graph_path = os.path.join(self.save_path, self.mode + '_dgl_graph.bin') self.graphs, label_dict = load_graphs(graph_path) self.labels = label_dict['labels'] info_path = os.path.join(self.save_path, self.mode + '_info.pkl') self.num_classes = load_info(info_path)['num_classes'] def has_cache(self): # check whether there are processed data in `self.save_path` graph_path = os.path.join(self.save_path, self.mode + '_dgl_graph.bin') info_path = os.path.join(self.save_path, self.mode + '_info.pkl') return os.path.exists(graph_path) and os.path.exists(info_path) Note that there are cases not suitable to save processed data. For example, in the builtin dataset :class:`dgl.data.GDELTDataset`, the processed data is quite large, so it’s more effective to process each data example in ``__getitem__(idx)``. Loading OGB datasets using ``ogb`` package ---------------------------------------------- `Open Graph Benchmark (OGB) `__ is a collection of benchmark datasets. The official OGB package `ogb `__ provides APIs for downloading and processing OGB datasets into :class:`dgl.data.DGLGraph` objects. We introduce their basic usage here. First install ogb package using pip: .. code:: pip install ogb The following code shows how to load datasets for *Graph Property Prediction* tasks. .. code:: # Load Graph Property Prediction datasets in OGB import dgl import torch from ogb.graphproppred import DglGraphPropPredDataset from torch.utils.data import DataLoader def _collate_fn(batch): # batch is a list of tuple (graph, label) graphs = [e[0] for e in batch] g = dgl.batch(graphs) labels = [e[1] for e in batch] labels = torch.stack(labels, 0) return g, labels # load dataset dataset = DglGraphPropPredDataset(name='ogbg-molhiv') split_idx = dataset.get_idx_split() # dataloader train_loader = DataLoader(dataset[split_idx["train"]], batch_size=32, shuffle=True, collate_fn=_collate_fn) valid_loader = DataLoader(dataset[split_idx["valid"]], batch_size=32, shuffle=False, collate_fn=_collate_fn) test_loader = DataLoader(dataset[split_idx["test"]], batch_size=32, shuffle=False, collate_fn=_collate_fn) Loading *Node Property Prediction* datasets is similar, but note that there is only one graph object in this kind of dataset. .. code:: # Load Node Property Prediction datasets in OGB from ogb.nodeproppred import DglNodePropPredDataset dataset = DglNodePropPredDataset(name='ogbn-proteins') split_idx = dataset.get_idx_split() # there is only one graph in Node Property Prediction datasets g, labels = dataset[0] # get split labels train_label = dataset.labels[split_idx['train']] valid_label = dataset.labels[split_idx['valid']] test_label = dataset.labels[split_idx['test']] *Link Property Prediction* datasets also contain one graph per dataset: .. code:: # Load Link Property Prediction datasets in OGB from ogb.linkproppred import DglLinkPropPredDataset dataset = DglLinkPropPredDataset(name='ogbl-ppa') split_edge = dataset.get_edge_split() graph = dataset[0] print(split_edge['train'].keys()) print(split_edge['valid'].keys()) print(split_edge['test'].keys())