Graph Attention Networks (GAT) ============ - Paper link: [https://arxiv.org/abs/1710.10903](https://arxiv.org/abs/1710.10903) - Author's code repo (in Tensorflow): [https://github.com/PetarV-/GAT](https://github.com/PetarV-/GAT). - Popular pytorch implementation: [https://github.com/Diego999/pyGAT](https://github.com/Diego999/pyGAT). Dependencies ------------ - tensorflow 2.1.0+ - requests ```bash pip install tensorflow requests ``` How to run ---------- Run with following: ```bash python3 train.py --dataset=cora --gpu=0 ``` ```bash python3 train.py --dataset=citeseer --gpu=0 --early-stop ``` ```bash python3 train.py --dataset=pubmed --gpu=0 --num-out-heads=8 --weight-decay=0.001 --early-stop ``` Results ------- | Dataset | Test Accuracy | Baseline (paper) | | -------- | ------------- | ---------------- | | Cora | 84.2 | 83.0(+-0.7) | | Citeseer | 70.9 | 72.5(+-0.7) | | Pubmed | 78.5 | 79.0(+-0.3) | * All the accuracy numbers are obtained after 200 epochs. * All time is measured on EC2 p3.2xlarge instance w/ V100 GPU.