from .attention import * from .layers import * from .functions import * from .embedding import * import torch as th import dgl.function as fn import torch.nn.init as INIT class UEncoder(nn.Module): def __init__(self, layer): super(UEncoder, self).__init__() self.layer = layer self.norm = LayerNorm(layer.size) def pre_func(self, fields='qkv'): layer = self.layer def func(nodes): x = nodes.data['x'] norm_x = layer.sublayer[0].norm(x) return layer.self_attn.get(norm_x, fields=fields) return func def post_func(self): layer = self.layer def func(nodes): x, wv, z = nodes.data['x'], nodes.data['wv'], nodes.data['z'] o = layer.self_attn.get_o(wv / z) x = x + layer.sublayer[0].dropout(o) x = layer.sublayer[1](x, layer.feed_forward) return {'x': x} return func class UDecoder(nn.Module): def __init__(self, layer): super(UDecoder, self).__init__() self.layer = layer self.norm = LayerNorm(layer.size) def pre_func(self, fields='qkv', l=0): layer = self.layer def func(nodes): x = nodes.data['x'] if fields == 'kv': norm_x = x else: norm_x = layer.sublayer[l].norm(x) return layer.self_attn.get(norm_x, fields) return func def post_func(self, l=0): layer = self.layer def func(nodes): x, wv, z = nodes.data['x'], nodes.data['wv'], nodes.data['z'] o = layer.self_attn.get_o(wv / z) x = x + layer.sublayer[l].dropout(o) if l == 1: x = layer.sublayer[2](x, layer.feed_forward) return {'x': x} return func class HaltingUnit(nn.Module): halting_bias_init = 1.0 def __init__(self, dim_model): super(HaltingUnit, self).__init__() self.linear = nn.Linear(dim_model, 1) self.norm = LayerNorm(dim_model) INIT.constant_(self.linear.bias, self.halting_bias_init) def forward(self, x): return th.sigmoid(self.linear(self.norm(x))) class UTransformer(nn.Module): "Universal Transformer(https://arxiv.org/pdf/1807.03819.pdf) with ACT(https://arxiv.org/pdf/1603.08983.pdf)." MAX_DEPTH = 8 thres = 0.99 act_loss_weight = 0.01 def __init__(self, encoder, decoder, src_embed, tgt_embed, pos_enc, time_enc, generator, h, d_k): super(UTransformer, self).__init__() self.encoder, self.decoder = encoder, decoder self.src_embed, self.tgt_embed = src_embed, tgt_embed self.pos_enc, self.time_enc = pos_enc, time_enc self.halt_enc = HaltingUnit(h * d_k) self.halt_dec = HaltingUnit(h * d_k) self.generator = generator self.h, self.d_k = h, d_k self.reset_stat() def reset_stat(self): self.stat = [0] * (self.MAX_DEPTH + 1) def step_forward(self, nodes): x = nodes.data['x'] step = nodes.data['step'] pos = nodes.data['pos'] return {'x': self.pos_enc.dropout(x + self.pos_enc(pos.view(-1)) + self.time_enc(step.view(-1))), 'step': step + 1} def halt_and_accum(self, name, end=False): "field: 'enc' or 'dec'" halt = self.halt_enc if name == 'enc' else self.halt_dec thres = self.thres def func(nodes): p = halt(nodes.data['x']) sum_p = nodes.data['sum_p'] + p active = (sum_p < thres) & (1 - end) _continue = active.float() r = nodes.data['r'] * (1 - _continue) + (1 - sum_p) * _continue s = nodes.data['s'] + ((1 - _continue) * r + _continue * p) * nodes.data['x'] return {'p': p, 'sum_p': sum_p, 'r': r, 's': s, 'active': active} return func def propagate_attention(self, g, eids): # Compute attention score g.apply_edges(src_dot_dst('k', 'q', 'score'), eids) g.apply_edges(scaled_exp('score', np.sqrt(self.d_k)), eids) # Send weighted values to target nodes g.send_and_recv(eids, [fn.src_mul_edge('v', 'score', 'v'), fn.copy_edge('score', 'score')], [fn.sum('v', 'wv'), fn.sum('score', 'z')]) def update_graph(self, g, eids, pre_pairs, post_pairs): "Update the node states and edge states of the graph." # Pre-compute queries and key-value pairs. for pre_func, nids in pre_pairs: g.apply_nodes(pre_func, nids) self.propagate_attention(g, eids) # Further calculation after attention mechanism for post_func, nids in post_pairs: g.apply_nodes(post_func, nids) def forward(self, graph): g = graph.g N, E = graph.n_nodes, graph.n_edges nids, eids = graph.nids, graph.eids # embed & pos g.nodes[nids['enc']].data['x'] = self.src_embed(graph.src[0]) g.nodes[nids['dec']].data['x'] = self.tgt_embed(graph.tgt[0]) g.nodes[nids['enc']].data['pos'] = graph.src[1] g.nodes[nids['dec']].data['pos'] = graph.tgt[1] # init step device = next(self.parameters()).device g.ndata['s'] = th.zeros(N, self.h * self.d_k, dtype=th.float, device=device) # accumulated state g.ndata['p'] = th.zeros(N, 1, dtype=th.float, device=device) # halting prob g.ndata['r'] = th.ones(N, 1, dtype=th.float, device=device) # remainder g.ndata['sum_p'] = th.zeros(N, 1, dtype=th.float, device=device) # sum of pondering values g.ndata['step'] = th.zeros(N, 1, dtype=th.long, device=device) # step g.ndata['active'] = th.ones(N, 1, dtype=th.uint8, device=device) # active for step in range(self.MAX_DEPTH): pre_func = self.encoder.pre_func('qkv') post_func = self.encoder.post_func() nodes = g.filter_nodes(lambda v: v.data['active'].view(-1), nids['enc']) if len(nodes) == 0: break edges = g.filter_edges(lambda e: e.dst['active'].view(-1), eids['ee']) end = step == self.MAX_DEPTH - 1 self.update_graph(g, edges, [(self.step_forward, nodes), (pre_func, nodes)], [(post_func, nodes), (self.halt_and_accum('enc', end), nodes)]) g.nodes[nids['enc']].data['x'] = self.encoder.norm(g.nodes[nids['enc']].data['s']) for step in range(self.MAX_DEPTH): pre_func = self.decoder.pre_func('qkv') post_func = self.decoder.post_func() nodes = g.filter_nodes(lambda v: v.data['active'].view(-1), nids['dec']) if len(nodes) == 0: break edges = g.filter_edges(lambda e: e.dst['active'].view(-1), eids['dd']) self.update_graph(g, edges, [(self.step_forward, nodes), (pre_func, nodes)], [(post_func, nodes)]) pre_q = self.decoder.pre_func('q', 1) pre_kv = self.decoder.pre_func('kv', 1) post_func = self.decoder.post_func(1) nodes_e = nids['enc'] edges = g.filter_edges(lambda e: e.dst['active'].view(-1), eids['ed']) end = step == self.MAX_DEPTH - 1 self.update_graph(g, edges, [(pre_q, nodes), (pre_kv, nodes_e)], [(post_func, nodes), (self.halt_and_accum('dec', end), nodes)]) g.nodes[nids['dec']].data['x'] = self.decoder.norm(g.nodes[nids['dec']].data['s']) act_loss = th.mean(g.ndata['r']) # ACT loss self.stat[0] += N for step in range(1, self.MAX_DEPTH + 1): self.stat[step] += th.sum(g.ndata['step'] >= step).item() return self.generator(g.ndata['x'][nids['dec']]), act_loss * self.act_loss_weight def infer(self, *args, **kwargs): raise NotImplementedError def make_universal_model(src_vocab, tgt_vocab, dim_model=512, dim_ff=2048, h=8, dropout=0.1): c = copy.deepcopy attn = MultiHeadAttention(h, dim_model) ff = PositionwiseFeedForward(dim_model, dim_ff) pos_enc = PositionalEncoding(dim_model, dropout) time_enc = PositionalEncoding(dim_model, dropout) encoder = UEncoder(EncoderLayer((dim_model), c(attn), c(ff), dropout)) decoder = UDecoder(DecoderLayer((dim_model), c(attn), c(attn), c(ff), dropout)) src_embed = Embeddings(src_vocab, dim_model) tgt_embed = Embeddings(tgt_vocab, dim_model) generator = Generator(dim_model, tgt_vocab) model = UTransformer( encoder, decoder, src_embed, tgt_embed, pos_enc, time_enc, generator, h, dim_model // h) # xavier init for p in model.parameters(): if p.dim() > 1: INIT.xavier_uniform_(p) return model