# DGL Implementation of the CompGCN Paper This DGL example implements the GNN model proposed in the paper [CompositionGCN](https://arxiv.org/abs/1911.03082). The author's codes of implementation is in [here](https://github.com/malllabiisc/CompGCN) Example implementor ---------------------- This example was implemented by [zhjwy9343](https://github.com/zhjwy9343) and [KounianhuaDu](https://github.com/KounianhuaDu) at the AWS Shanghai AI Lab. Dependencies ---------------------- - pytorch 1.9.0 - dgl 0.7.1 - numpy 1.20.3 - ordered_set 4.0.2 Dataset --------------------------------------- The datasets used for link predictions are FB15k-237 constructed from Freebase and WN18RR constructed from WordNet. The statistics are summarized as followings: **FB15k-237** - Nodes: 14541 - Relation types: 237 - Reversed relation types: 237 - Train: 272115 - Valid: 17535 - Test: 20466 **WN18RR** - Nodes: 40943 - Relation types: 11 - Reversed relation types: 11 - Train: 86835 - Valid: 3034 - Test: 3134 How to run -------------------------------- First to get the data, one can run ```python sh get_fb15k-237.sh ``` ```python sh get_wn18rr.sh ``` Then for FB15k-237, run ```python python main.py --score_func conve --opn ccorr --gpu 0 --data FB15k-237 ``` For WN18RR, run ```python python main.py --score_func conve --opn ccorr --gpu 0 --data wn18rr ``` Performance ------------------------- **Link Prediction Results** | Dataset | FB15k-237 | WN18RR | |---------| ------------------------ | ------------------------ | | Metric | Paper / ours (dgl) | Paper / ours (dgl) | | MRR | 0.355 / 0.348 | 0.479 / 0.466 | | MR | 197 / 208 | 3533 / 3542 | | Hit@10 | 0.535 / 0.527 | 0.546 / 0.525 | | Hit@3 | 0.390 / 0.380 | 0.494 / 0.476 | | Hit@1 | 0.264 / 0.259 | 0.443 / 0.435 |