Geometric Deep Learning models ========= This example shows how to use geometric deep learning models defined in `dgl.nn.pytorch.conv` for graph classification. Currently we support following models: - [ChebNet](https://arxiv.org/pdf/1606.09375.pdf) - [MoNet](https://arxiv.org/pdf/1611.08402.pdf) ## Image Classification on MNIST By transforming images to graphs, graph classifcation algorithms could be applied to image classification problems. ### Usage ```bash python mnist.py --model cheb --gpu 0 python mnist.py --model monet --gpu 0 ``` ### Acknowledgement We thank [Xavier Bresson](https://github.com/xbresson) for providing code for graph coarsening algorithm and grid graph building in [CE7454_2019 Labs](https://github.com/xbresson/CE7454_2019/tree/master/codes/labs_lecture14/lab01_ChebGCNs).